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SUMMARY 

This r epor t  p resents  a r a t h e r  broad survey of t h e  Venus r ada r  o r b i t e r  
p o s s i b i l i t i e s  wi th in  the  per iod  1983-1990. I n i t i a l l y ,  t h e  d e t a i l  of space- 
c r a f t  design i s  reduced i n  order  t o  expand considerat ion t o  a l l  t he  opportu- 
n i t i e s  wi th in  t h e  e n t i r e  per iod.  This i s  done by consider ing only t h e  r ada r  
imaging experiment and the  subsystems needed t o  support  i t .  
by recognizing t h a t  t he  da ta  t ransmission r a t e s  and RF power l e v e l s  w i l l  be 
s e t  by t h e  requirements of such an experiment. 

t h e  improving c a p a b i l i t i e s  of Earth based radar  systems and an examination of 
t h e  r e s u l t s  of Earth a i rbo rne  r a d a r  imaging. 
f o r  high coverage (80 percent  o r  g rea t e r )  a t  a r e so lu t ion  of 100 m i n  both 
azimuth and range. 

combined with a very l a r g e  Earth s t o r a b l e  r e t r o  propuls ion system would be 
capable o f  e s t ab l i sh ing  a c i r c u l a r  o r b i t  under a l l  p o s s i b l e  launch condi t ions.  
Thus, o r b i t  e c c e n t r i c i t y  has  been introduced a s  a parameter throughout t h i s  
present  at ion. 

An examination of  t y p i c a l  radar  design parameters has  led t o  upper and 
lower l i m i t s  on swath width of  about 100 and 50 km. A lower l i m i t  on o r b i t  
e c c e n t r i c i t y  of =O. 2 w a s  set  by considering the  cur ren t  Viking propuls ion 
system. A s epa ra t e  examination of s o l a r  per turba t ions  ind ica ted  t h a t  t h e  
o r b i t  maintenance problem increases  r ap id ly  above an e c c e n t r i c i t y  of 0.5.  

Having def ined an a rea  of i n t e r e s t  i n  t he  swath wid th-eccent r ic i ty  coor- 
d ina t e s ,  a number of Venus approach m a s s  estimates were made f o r  cases  within 
t h e  e s t ab l i shed  bounds. These ind ica t ed  low mass values f o r  high e c c e n t r i c i t y  
designs.  This was the  r e s u l t  of t h e  low r e t r o  v e l o c i t y  requirements of eccen- 
t r i c  o r b i t s .  

This i s  j u s t i f i e d  

Minimum mission imaging requirements have been s e t  by comparison with 

This has led  t o  a requirement 

A f i r s t  main conclusion is t h a t  only t h e  Shut t le /Centaur  launch system 

I t  the re fo re  would seem t h a t  t h e  use of moderately eccen t r i c  o r b i t s  is  
an i n t e r e s t i n g  approach t o  meeting t h e  Venus radar  mapping requirements. 
However, t h e  use  of e l l i p t i c  o r b i t s  extends the  minimum mission mapping time 
from 120 t o  240 days. This c r e a t e s  a v a r i e t y  of lifetime r e l a t e d  technology 
problems f o r  many subsystems. 



INTRODUCTION 

Although Venus has been examined repea ted ly  from Earth and from f lyby  
spacec ra f t ,  and although i t s  atmosphere has been probed d i r e c t l y  seve ra l  
t imes,  very l i t t l e  is  known of  t he  phys ica l  h i s t o r y  of Ear th ' s  nea res t  
neighbor p l ane t  i n  t h e  s o l a r  system. 
with s ize  and mass nea r ly  equal  t o  those of Earth,  t he re  i s  considerable  
s c i e n t i f i c  i n t e r e s t  i n  discovering the  phenomena and processes  t h a t  have 
shaped i t s  surface.  
provide new information on t h e  formation of t h e  s o l a r  system and new under- 
s tanding  of  similar processes  h e r e  on Earth.  

Since Venus i s  a t e r r e s t r i a l - t y p e  p l ane t  

A d e t a i l e d  s tudy of  t he  morphology of t he  sur face  may 

Earth-based radar  te lescopes  have r e c e n t l y  succeeded i n  pene t r a t ing  the  
continuous cloud cover of Venus t o  image some of t he  f e a t u r e s  of a small p a r t  
of  the  t o t a l  su r f ace  t o  a coarse sca l e .  Such measurements can, however, only 
be  made nea r  i n f e r i o r  conjunction of Venus with Earth and t h e  re t rograde  r o t a -  
t i o n  of Venus about i t s  ax is  i s  such a s  t o  always present  t h e  same hemisphere 
toward Earth a t  i n f e r i o r  conjunction. 
poss ib l e  using Earth-based radar .  For t h i s  reason and t h e  poor r e so lu t ion  
from Earth,  a proper ly  placed radar-mapping s a t e l l i t e  i n  o r b i t  about Venus 
could r evea l  important high and moderate r e s o l u t i o n  information concerning t h e  
topography of t he  su r face  over a near ly  g loba l  s c a l e .  I t  i s  a l s o  poss ib l e  
t h a t  such a s a t e l l i t e  could provide concomitant da t a  on su r face  s t r u c t u r e  and 
composition. 
examination of the  f e a s i b i l i t y  of placing such a s a t e l l i t e  i n  o r b i t  about 
Venus and r e t r i e v i n g  t h e  information. 

Thus complete su r face  coverage i s  not 

The purpose of  t he  present  r epor t  i s  t o  p re sen t  a prel iminary 

To provide a b a s i s  f o r  analyzing t h e  f e a s i b i l i t y  of t h i s  mission, t h e  
These requirements a r e  developed sc ience  requirements are examined f i r s t .  

from a r a t i o n a l  r e l a t i v e  t o  the  sur face  explora t ion  goals  f o r  Venus. 
A d e t a i l e d  a n a l y s i s  and d iscuss ion  of t he  mission systems t r a d e o f f s  i s  then 
made. F ina l ly ,  a s p e c i f i c a t i o n  of  des i r ab le  mission opera t iona l  p r o f i l e s  and 
spacec ra f t  design opt ions is  presented and an assessment of the  implied tech-  
nology requirements made. 

SCIENCE REQUIREMENTS 

The primary s c i e n t i f i c  goals  f o r  t he  explora t ion  of t h e  su r face  of 
Venus, as de l inea ted  by the  Space Science Board ( r e f .  1) , toward which an 
o r b i t i n g  radar-mapping mission would provide information are as fol lows:  
(I) determine the  geometric shape of Venus, (2) examine t h e  su r face  mor- 
phology, and (3) examine t h e  c r u s t a l  s t r u c t u r e .  
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Mapping Data Requirements 

On t h e  b a s i s  of experience with o p t i c a l  imagery, t h e  f i rs t  goal  r equ i r e s  
r eg iona l  coverage o f  su r face  elevat ions and average s lopes  with a ho r i zon ta l  
r e s o l u t i o n  of about 1 km. A v e r t i c a l  r e s o l u t i o n  of perhaps 500 m i s  desired 
f o r  at least 80 percent  of t h e  global  surface.  I t  should be noted t h a t  high 
s u r f a c e  area coverage does no t  r equ i r e  extensive l a t i t u d e  range. 
87-percent coverage r e s u l t s  from -60' l a t i t u d e  above and below t h e  equator.  
To adequately examine su r face  morphology photographically r e q u i r e s  a ho r i -  
zontal  r e s o l u t i o n  o f  about 100 m with a v e r t i c a l  r e so lu t ion  of about 50 m on 
a loca l  scale. These l o c a l  areas could b e  s e l e c t e d  from t h e  lower r e s o l u t i o n  
images and might represent  a t o t a l  coverage of a t  least  10 percent  of t h e  
t o t a l  global  surface.  The t h i r d  goa l ,  t h a t  of examining t h e  d e t a i l e d  s t r u c -  
ture o f  c r u s t a l  f e a t u r e s ,  can, t o  some ex ten t ,  be met with photographs having 
a ground r e s o l u t i o n  of 100 m,  bu t  it normally r equ i r e s  images with d e t a i l e d  
r e so lu t ion  as small as 1 m. Such f i n e  r e s o l u t i o n  i s  necessary only over very 
small areas, however, poss ib ly  l e s s  than 1 percent  of t h e  surface.  
d e t a i l e d  discussion o f  t h e  s c i e n t i f i c  ob jec t ives  f o r  su r face  imagery of Venus 
has been given by Klopp e t  a l .  ( r e f .  2 ) .  

For  example, 

A more 

These r e s o l u t i o n  requirements are based on wel l -es tabl ished,  familiar 
photogrammetric techniques; some caut ion should t h e r e f o r e  be used i n  i n t e r -  
p r e t i n g  them i n  terms of r ada r  r e s o l u t i o n s .  These photogrammetric techniques 
have been developed and r e f i n e d  and have gained acceptance through a long 
h i s t o r y  of i n t e r p r e t i n g  aer ia l  photography with "ground t ruth"  corroboration 
and a s h o r t e r  h i s t o r y  o f  lunar  and p l ane ta ry  imaging. Radar imaging tech- 
niques, on t h e  o the r  hand, do no t  have such an extensive h i s t o r i c a l  b a s i s .  
The p o s s i b i l i t y  of nonmili tary app l i ca t ions  of r a d a r  was f i r s t  reported i n  
1948 (ref ,  3 ) ,  bu t  it w a s  no t  u n t i l  t h e  e a r l y  1960's t h a t  l imi t ed  dec la s s i -  
f i c a t i o n  of d a t a  concerning imagery generated by Side-Looking Airborne Radar 
(SLAR) systems allowed an open discussion of t h e  geoscience p o t e n t i a l  of  such 
imagery (refs. 4 and 5) .  Although t h e  geoscience c a p a b i l i t i e s  o f  SLAR imag- 
e r y  have been well documented i n  t h e  las t  10 years , '  such imagery does not  
seem t o  have gained widespread f a m i l i a r i t y  among the  community of geoscien- 
t ists  and p l a n e t o l o g i s t s ,  and i t s  p o t e n t i a l s  are j u s t  beginning t o  be appre- 
c i a t e d  (ref. 7). A b r i e f  summary of t h e  geological  c a p a b i l i t i e s  and require-  
ments of r a d a r  imagery w i l l  a i d  i n  placing t h e  r e s o l u t i o n  requirements 
mentioned above i n  perspect ive.  

'An extensive bibliography covering t h i s  documentation i s  no t  appropriate  
here. A bibliography covering most of t h e  work p r i o r  t o  1968 has been com- 
p i l e d  by R. L. Waters (ref. 7) ;  a l i s t  of more r ecen t  references is  given by 
R. K. Moore ( r e f .  8). Other p e r t i n e n t  references w i l l  be c i t e d  as needed. ' 
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S p a t i a l  r e l a t ionsh ips  a r e  extremely important t o  t h e  s tudy of s t r u c t u r a l  
geology, and the  r ep resen ta t ion  of these  r e l a t ionsh ips  i n  radar  images i s  
very s i m i l a r  t o  t h e  r ep resen ta t ion  i n  a e r i a l  photographs. 
a g r e a t  dea l  of information i s  ava i l ab le  t o  t h e  geologis t  from radar  imagery. 
Reeves ( r e f .  S ) ,  f o r  i n s t ance ,  has pointed out  t h a t  some f e a t u r e s ,  e spec ia l ly  
those assoc ia ted  with l i n e a r i t i e s  (e .g . ,  f a u l t s ) ,  a r e  more e a s i l y  i d e n t i f i e d  
on r a d a r  images than  on comparable a e r i a l  photographs. 
t r a t i o n s  o f  t he  type of information ava i l ab le  i s  the  SLAR imagery of eas t e rn  
Panama taken by the  U.  S. Army Corps of Engineers ( r e f .  9) and i n t e r p r e t e d  a t  
t h e  Universi ty  of Kansas by MacDonald ( r e f .  10) and Wing ( r e f s .  11 and 1 2 ) .  
This region is  v i r t u a l l y  inaccess ib l e  from t h e  ground due t o  dense f o r e s t s  and 
h o s t i l e  na t ives  (Cuiia Indians) ( r e f .  13) and has proved impossible t o  map with 
conventional a e r i a l  photography due t o  a v i r t u a l l y  permanent cloud cover 
( r e f .  8). Consequently, t h e  i n t e r p r e t a t i o n  of t he  r ada r  imagery was done 
a p r i o r i ;  i t  was no t  biased by a preknowledge of the  e x i s t i n g  geologica l  
f ea tu re s .  

A s  a consequence, 

One of  t he  bes t  i l l u s -  

Most of these  radar  images have a nominal ground-resolved d is tance  of 
-15 m; examples of t h i s  imagery, which were k indly  provided by L.  F .  Dellwig, 
R.  K .  Moore, and R. S. Wing of t h e  Universi ty  of  Kansas, a r e  shown i n  f i g -  
ures  l ( a )  and 2(a) .  On t h e  bas i s  of a s e r i e s  of such radar  images, Wing was 
able  t o  i d e n t i f y  numerous previously unknown examples of  t h e  following types 
of s t ruc tura l -phys iographic  elements: f e a t u r e s  r e l a t e d  t o  folded s t r a t a ,  
such as  a n t i c l i n e s  and syncl ines ;  f a u l t - r e l a t e d  f e a t u r e s ,  such as f a u l t s ,  
contac ts ,  grabens and ho r s t s ;  and igneous f e a t u r e s ,  such as d ikes ,  plugs,  
domes, and ca lderas .  H e  was a l s o  able  t o  i d e n t i f y  major s t r a t a  and blocks 
and measure dips  and s t r i k e s .  Figures 1 and 2 show examples of some of t hese  
f ea tu res .  The n e t  r e s u l t  of t h e  SLAR imagery i n t e r p r e t a t i o n s  of MacDonald 
and of Wing is  the  geological  reconnaissance map of Panama shown i n  f i g u r e  3 
(reproduced with permission from r e f .  10).  This i s  a graphic  example of t he  
wealth of  s t r u c t u r a l  geologic information ava i l ab le  from rada r  imagery alone. 
For comparison, f i g u r e s  l (b )  and 2(b) a l s o  include t h e  same imagery systemat- 
i c a l l y  degraded t o  s imulate  a r e so lu t ion  of = lo0  m .  

I t  would appear then t h a t  t he  r e so lu t ions  spec i f i ed  above f o r  o p t i c a l  
photographs can be  d i r e c t l y  i n t e r p r e t e d  i n  terms of ground-resolved d is tances  
on r a d a r  images. There are, however, s eve ra l  o the r  f a c e t s  of radar  imagery 
which must be considered i n  designing a p l ane ta ry  radar-mapping mission; t h e  
most p e r t i n e n t  of t hese  a r e  s te reoscopic  imaging, mu l t i spec t r a l  imaging, and 
po la r i za t ion .  

'tSStereoseopieN imaging- Experience i n  a e r i a l  photography has ind ica ted  
t h a t  t he  increase  i n  usefulness  gained by generat ing s t e r e o  photographic 
images is  f a r  out  of proport ion t o  the  a t t endan t  increase  i n  e f f o r t  required.  
This i s  undoub'tedly due, a t  l e a s t  i n  p a r t ,  t o  t h e  remarkable e f f i c i ency  of 
t he  human b r a i n  i n  i n t e r p r e t i n g  s te reo-opt ica1  images i n  terms of th ree-  
dimensional configurat ions.  The advantages of using t h i s  i n t e r p r e t i v e  
g b i l i t y  are no t  ava i l ab le ,  however, i n  t h e  case of  radar  imagery due t o  
fundamental d i f f e rences  i n  t h e  imaging process.  
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Nevertheless ,  i t  has been conclusively demonstrated t h a t  a comprehensive 
i n t e r p r e t a t i o n  of  radar  imagery almost requi res  imaging from more than one 
d i r e c t i o n  ( r e f s .  8 ,  10, and 14). A t  Venus, some shadowing ambiguities and 
t h e  he ights  of some ob jec t s  could be resolved by requi r ing  >50 percent  over- 
lap  between adjacent  swaths, thus ensuring t h a t  t h e  e n t i r e  su r face  i s  seen 
from two d i r ec t ions .  
i n  Panama with SLAR imagery ( r e f s .  10 and 14) have shown t h a t  l i n e a r  f e a t u r e s  
can be completely suppressed i f  they make an angle  of 230' with the  viewing 
d i r ec t ion .  There i s  a s t rong  argument, t he re fo re ,  f o r  attempting t o  obta in  
imagery from f o u r  orthogonal look d i r ec t ions .  Combined with a >SO-percent 
swath overlap,  t h i s  could be  achieved i n  a t  l e a s t  two ways: (1) using two 
spacecraf t  with orthogonal o r b i t  i n c l i n a t i o n s  o r  (2) operat ing a s i n g l e  
spacecraf t  i n  a "squint" mode whereby the  r ada r  beam is  a l t e r n a t e l y  d i r ec t ed  
4 5 O  forward and 45O backward along t h e  f l i g h t  pa th ,  with the  corresponding 
images recorded separa te ly .  
imagery f o r  a t  l e a s t  some f r a c t i o n  of  t h e  sur face ,  while t h e  l a t t e r  technique 
would provide such imagery f o r  the  e n t i r e  coverage of t h e  spacec ra f t .  

On t h e  o the r  hand, s t u d i e s  o f  geological  s t r u c t u r e s  

The former method would provide four -d i rec t ion  

"MuZtispeetraZ" imaging- Mapping with multifrequency radar  systems i s  
somewhat of a microwave equivalent  of multiband s p e c t r a l  reconnaissance i n  
o p t i c a l  wavelengths using very narrow bandwidths. 
work has been done t o  i n v e s t i g a t e  t h e  advantages of  such radar  systems, bu t  
such s t u d i e s  as have been done i n d i c a t e  t h a t  imaging a t  mul t ip le  f requencies  
may be more of an advantage i n  radar  reconnaissance than i n  o p t i c a l  recon- 
naissance.  
increased i n t e r p r e t a t i o n  e f f i c i ency ,  while one of  t he  main advantages of 
multifrequency r ada r  imagery i s  r e l a t e d  t o  the  su r face  pene t r a t ion  of t he  
r ad ia t ion .  
radar ,  Badgley and Lyon (ref. 15) placed a r e f l e c t i n g  su r face  a t  t h e  bottom 
of  a sample of dry (-17-percent H20)  sand and sys temat ica l ly  removed layers  
u n t i l  a s i g n a l  was de tec ted  a t  normal incidence.  As  one would expect ,  they 
found a s t rong  frequency dependence, with X-band s i g n a l s  ( A  3.5 cm) pene- 
t r a t i n g  -5 cm of  sand, C-band ( A  = 5.5 an) penet ra t ing  -20  cm, and P-band 
( A  2 133 cm) pene t r a t ing  t o  a depth of more than 800 cm. 

To d a t e ,  very l i t t l e  f i e l d  

One of t h e  p r i n c i p a l  advantages i n  co lor  photography is  t h e  

I n  a cont ro l led  experiment t o  measure t h e  su r face  pene t r a t ion  of  

One of  t h e  implicat ions of t h i s  s tudy  i s  t h a t  multifrequency r a d a r  
imagery might be able  t o  be used t o  de t ec t  subsurface layer ing.  This  impli-  
ca t ion  has been shown t o  be v a l i d  i n  radar  imaging s t u d i e s  of t he  Pisgah 
Cra te r  a r ea  of Ca l i fo rn ia  ( r e f .  16). I n  t h i s  area, t h e r e  are ex tens ive  l ava  
flows, some of  which have been covered by windblown sand. 
K-band (A : 2 cm) ima"ges showed t h e  sand and t h e  lava flows where t h e  l a t t e r  
were f r e e  of sand, while P-band s igna l s  ( A  2 70 cm) penetrated up t o  180 a n  
o f  sand t o  accura te ly  po r t r ay  t h e  underlying lava flows. 
h o t ,  dry condi t ions expected a t  the  s u r f a c e  of Venus ( r e f .  17) , t h e  sens i -  
t i v i t y  of  dual-band imagery i n  t h e  de t ec t ion  of aeo l i an  layer ing of dry sand, 
which has been express ly  demonstrated by these  two s t u d i e s ,  i s  very  pe r t inen t .  

Dellwig found t h a t  

Considering the  
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The frequency s e l e c t i o n  t r adeof f s  w i l l  be discussed i n  more d e t a i l  
below; i t  would appear t h a t  atmospheric a t t enua t ion  may r e s t r i c t  the  system 
t o  wavelengths 2 3  cm (X-band), while t he  low-frequency l i m i t  w i l l  be p r i -  
marily determined by spacec ra f t  considerat ions.  

As i n  t h e  case of  "stereo" imaging, although the  prospects  of t h e  addi- 
t i o n a l  information ava i l ab le  from mul t ip le  frequency imaging a r e  exc i t i ng ,  
t h e  base l ine  mission involving a s i n g l e  frequency w i l l  y i e l d  a g r e a t  dea l  
of  s ci  en ti f i c a l  l y  i n t e r  es t i n g  information. 

PoZarization-Most SLAR systems were i n i t i a l l y  designed t o  image only 
the  component of t he  r e t u r n  s igna l  which was polar ized  i n  t h e  same d i r e c t i o n  
as the  i l lumina t ing  beam. There have been seve ra l  examples r ecen t ly ,  
however, of important r e s u l t s  being obtained from the  cross-polar ized image 
which were impossible from t h e  l ike-polar ized image ( r e f s .  20 t o  25 ) .  
Perhaps t h e  most s t r i k i n g  example involved another  study of t he  lava flows 
i n  the  Pisgah Crater area i n  which a comparison between t h e  l ike-  and 
cross-polar ized images allowed the  separa t ion  of lava flows of d i f f e r e n t  
ages, weathering, and roughness ( r e f s .  21  and 22) .  The a v a i l a b i l i t y  of 
images from both po la r i za t ions  seems e s s e n t i a l  t o  t h e  complete i d e n t i f i -  
ca t ion  of f ea tu res  and may a l s o  allow the  i d e n t i f i c a t i o n  of mineralogy 
( r e f .  26). 
types of images is  af fec ted  by reso lu t ion  o r  by the  inf luence of moisture 
content o q t h e  enhancement of t h e  cross-polar ized image. 
t h a t  t h e  cross-polar ized s igna l  i s  highly dependent on t h e  amount of mois- 
t u r e  i n  the  sur face ,  thus accounting f o r  t h e  r e l a t i v e  d i f fe rence  i n  r e tu rns  
from d i f f e r e n t  rock types and across  f a u l t s  ( r e f . '  26). If the  depolariza- 
t i o n  of t h e  s i g n a l  is  indeed s t rongly  dependent on t h e  moisture content of 
t h e  t a r g e t ,  then t h e  usefulness of dual po la r i za t ion  imagery of t he  sur face  
of Venus would be specula t ive  due t o  the  expected absence of l iqu id  water 
( r e f .  17 and o thers )  . 

I t  is not  c l e a r ,  however, how t h e  advantages of having both 

I t  may be t r u e  

Earth-Based Capabi l i ty  

Before examining t h e  capab i l i t y  t o  achieve the  des i red  images and 
coverage from an o r b i t e r ,  it is  only proper t o  inqui re  i n t o  t h e  achievements 
and c a p a b i l i t y  of Earth-based radar  systems. 
of 1969, r ada r  maps of t h e  sur face  of Venus were obtained with the  36-m 
Haystack and 18-m Westford antennas ( r e f .  28),  t h e  64-m Goldstone antenna 
(ref. 29), and the  296-m Arecibo antenna ( r e f .  30). The r e s u l t a n t  map gen- 
e r a t e d  from t h e  Goldstone d a t a  i s  shown i n  f i g u r e  4. This image has a 
ho r i zon ta l  r e so lu t ion  of about 80 km and covers a region pf l a t i t u d e  from 
about 10' t o  40° both north and south over near ly  one hemisphere of t h e  
p lane t .  Unfortunately,  t h e  r e so lu t ion  degrades r ap id ly  as t h e  d is tance  
between Earth and Venus increases .  
of Venus about i t s  axis i s  locked with t h e  r o t a t i o n  of  Earth about t he  Sun 
so as t o  always present  t he  same face toward Earth a t  i n f e r i o r  conjunction. 
Thus, only one hemisphere of Venus can e f f e c t i v e l y  be imaged by a s igna l  
from Earth. 

During the  i n f e r i o r  conjunction 

In  addi t ion ,  t h e  slow re t rograde  r o t a t i o n  
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Several i n t e r e s t i n g  la rge  f ea tu res  have been noted even a t  t h i s  coarse 
reso lu t ion .  Improvements can be made i n  t h e  imaging technique and are 
planned f o r  f u t u r e  conjunction per iods.  
l a rge  296-m antenna a t  Arecibo may r e s u l t  i n  images with reso lu t ions  
approaching 2 km. 
of a s i n g l e  hemisphere. 
which Arecibo can view Venus a t  i n f e r i o r  conjunction are 1980, 1988, and 
1996. The re so lu t ion  achievable i n  these  th ree  conjunctions i s  shown i n  
f i g u r e  5 as a funct ion of t h e  longitude on the  sur face  of  Venus. The bes t  
values  o f  r e so lu t ion  occur a t  t h e  po in t  of c loses t  approach (conjunction) 
between t h e  p l ane t s  and degrades at o the r  po in ts  due t o  the  increased d is -  
tance before  and a f t e r  conjunctions. If t h e  des i red  r e so lu t ion  within the  
swath is  approximately 2 km o r  less, then coverage from 10' t o  32' l a t i t u d e  
i s  poss ib le .  If a lower r e so lu t ion  i s  considered, then coverage up t o  70° 
l a t i t u d e  becomes poss ib l e  a t  about 5 km reso lu t ion .  

Use of these  improvements and the  

Again, however, t h i s  r e so lu t ion  w i l l  be confined t o  p a r t  
The next  most favorable  observat ional  per iods during 

Although the  images implied by f igu re  5 a r e  going t o  have s i g n i f i c a n t  
s c i e n t i f i c  value and a r e  wel l  worth making, they w i l l  no t  s a t i s f y  t h e  b a s i c  
requirements f o r  a good understanding of t he  morphology of t h e  surface of 
Venus. 
inary planning f o r  t h e  loca l ized  100-m coverage by an o r b i t e r .  

They can, i f  made i n  1980, provide an exce l len t  bas i s  f o r  t h e  prelim- 

MISSION AND SYSTEMS ANALYSIS 

The choice of t he  appropriate  mission and systems design o f  an o r b i t a l  
r ada r  mapper of Venus i s  much more i n t e r a c t i v e  than most o ther  unmanned 
explorat ion missions. There are s t rong  in t e rac t ions  between t h e  r e so lu t ion  
and coverage requirements on one hand and the  se l ec t ion  of the h e l i o c e n t r i c  
t r a n s f e r  and p lane tary  mapping o r b i t s  on the  other .  
e f f e c t  t h e  s e l e c t i o n  of a l t e r n a t i v e s  f o r  t h e  radar  antenna, a t t i t u d e  cont ro l ,  
power, data  handling, communications, and r e t r o  propulsion subsystems. I n  
t h i s  sec t ion ,  t h e  requirements f o r  h e l i o c e n t r i c  t r a n s f e r  t o  Venus and f o r  
o r b i t a l  i n s e r t i o n  i n t o  an o r b i t  about Venus w i l l  be  discussed. This w i l l  
have r e s u l t i n g  implicat ions on the  swath width of t h e  imaging s t r i p s  which, 
i n  tu rn ,  w i l l  have s t rong  implicat ions on the  s ize  of t h e  radar  antenna and 
the  associated power requirements t o  i l lumina te  t h a t  a rea .  
l e v e l  of these  power requirements has s t rong  implicat ions on the  power system 
choice and the  o r b i t a l  operations f o r  mapping and communication of  t h e  map- 
ping da ta  back t o  Earth. 

These choices a l s o  

F ina l ly ,  t h e  

Hel iocent r ic  Tra jec tor ies  

The conditions f o r  departure  from Earth and a r r i v a l  a t  Venus ( r e f .  35) 
are shown i n  f igu res  6(a) through ( j )  f o r  each of t h e  f i v e  launch opportuni- 
t i e s  i n  t h e  1980's ( i . e .  , 1983, 1985, 1986, 1988, and 1990). Two f igu res  ' 
a re  shown f o r  each launch opportunity.  
t u r e  i n j e c t i o n  energy C3 and dec l ina t ion  as a funct ion of departure  and 
a r r i v a l  dates .  

The f i rs t  gives  contours of depar- 

The departure  and a r r i v a l  dates  are given as J u l i a n  calendar 
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dates  and both type I (he l iocen t r i c  t r a n s f e r  angles l e s s  than 180') and 
'type I1 (he l iocen t r i c  t r a n s f e r  angles g r e a t e r  than 180') t r a j e c t o r i e s  are 
shown. The second f i g u r e  i n  each p a i r  gives similar contours of a r r i v a l  
hyperbolic excess speed a t  Venus, V,, and the  dec l ina t ion  and r i g h t  ascension 

*of the  approach hyperbolic asymptote vector .  Declination and r i g h t  ascension 
are defined i n  a planet-centered i n e r t i a l  coordinate system with the  p o s i t i v e  
X-axis p a r a l l e l  t o  t h e  major axis  of Venus and i n  the d i r e c t i o n  of  per ihe l ion .  
In  t h i s  coordinate system, the  Z-axis i s  normal t o  the  Venus o r b i t  plane and 
i n  the  d i r e c t i o n  of t h e  r o t a t i o n  vec tor  of Venus about the  Sun. The r o t a t i o n  
of the  sur face  of  Venus r e l a t i v e  t o  t h i s  coordinate system is retrograde.  
For the  purposes of t h i s  study, t h e  equator of Venus i s  assumed t o  coincide 
with the  Venus o r b i t  plane. 
t i v e  t o  t h i s  coordinate system is  shown i n  f i g u r e  7 .  

A t y p i c a l  s e t  of Venus a r r i v a l  conditions r e l a -  

Orbi t  Inser t ion  Requirements 

The a r r i v a l  hyperbolic excess speed and o r b i t  e c c e n t r i c i t y  chosen 
determine the  i n s e r t i o n  impulse required t o  achieve t h a t  cwbit. 
seen from f igures  6 t h a t  the  typ ica l  range of excess speed i s  between 4 and 
6 km/sec. The required impulsive ve loc i ty ,  AV, f o r  i n s e r t i o n  i n t o  o r b i t s  of 
various e c c e n t r i c i t i e s  i s  shown i n  f igu re  8 f o r  a range of hyperbolic excess 
speeds between 4 and 6 km/sec. 
500 km was assumed. I t  can be seen t h a t  t h e  AV requirement t o  i n s e r t  i n t o  a 
c i r c u l a r  o r b i t  l i e s  between about 3 . 5  and 4.5 km/sec. 
ment implies a space s to rab le  in se r t ion  s tage.  
j u s t  do not have s u f f i c i e n t  s p e c i f i c  impulse t o  de l ive r  such a high AV t o  
typ ica l  o r b i t e r  payloads. Furthermore, with space s to rab le  propel lan ts  
having a s p e c i f i c  impulse o f ,  say,  385 sec,  less than one-third of the  
weight approaching Venus can be placed i n t o  a c i r c u l a r  o r b i t  about Venus. 
Thus is  appears highly des i rab le  t o  consider e c c e n t r i c  o r b i t s  i n  order t o  
take advantage of the  associated decrease i n  i n s e r t i o n  requirements. 

I t  can be 

For these curves, a p e r i a p s i s  a l t i t u d e  of 

Such a high require-  
Earth s to rab le  propel lan ts  

To achieve the  maximum area coverage of t h e  p lane t  with a s ing le  space- 
c r a f t ,  a high i n c l i n a t i o n  o r b i t  i s  required,  and p e r i a p s i s  should be placed 
over t he  equator.  (Other p e r i a p s i s  pos i t ions  would c rea te  redundant coverage 
above o r  below t h e  equator.)  
through the very slow r o t a t i o n  of t h e  p lane t  under t h e  i n e r t i a l l y  f ixed  o r b i t  
plane. 
aps i s  over the  equator using an optimum i n s e r t i o n  a t  the  p e r i a p s i s  of t h e  
approach hyperbola. 
t he  values shown i n  f igu re  8. 
shown i n  f igu res  9(a) t o  (c) as a funct ion of t h e  required p e r i a p s i s  r o t a t i o n  
f o r  severa l  values of o r b i t  eccen t r i c i ty .  
6 km/sec) a r e  shown by the  th ree  f igu res .  

Fu l l  longi tudinal  coverage i s  then obtained 

I t  is  not  general ly  poss ib le  t o  e s t a b l i s h  a p o l a r  o r b i t  with pe r i -  

Thus a penal ty  f o r  p e r i a p s i s  r o t a t i o n  must be added t o  
The t o t a l  i n s e r t i o n  v e l o c i t y  requirement i s  

Three values of V, (4, 5 ,  and 

The amount of p e r i a p s i s  r o t a t i o n  required t o  place the  p e r i a p s i s  of a 
p o l a r  o r b i t  a t  t h e  equator i s  a funct ion of a r r i v a l  dec l ina t ion ,  a r r i v a l  
hyperbolic excess speed, and p e r i a p s i s  a l t i t u d e .  The angle between the  
approach asymptote and d i r e c t i o n  of p e r i a p s i s  of t he  approach hyperbola, E, 

v a r i e s  with Vm i n  the  range of i n t e r e s t  (as shown i n  f i g .  10) f o r  a 500-km 
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per i aps i s  a l t i t u d e .  For absolute  values of the  a r r i v a l  dec l ina t ion ,  6 ,  less 
than E, t h e  required pe r i aps i s  r o t a t i o n  f o r  po lar  o r b i t s  i s  always p o s i t i v e  
and i s  E - I 6 I .  I t  can be seen from f igu res  6 t h a t  t h e  a r r i v a l  dec l ina t ion  

76 I < E .  Given t h e  des i red  o r b i t a l  e c c e n t r i c i t y  and t h e  pe r i aps i s  r o t a t i o n  
from the  above computation, t he  optimal t o t a l  i n s e r t i o n  AV can be obtained 
from f i g u r e  9. 

enera l ly  does not  exceed +40', thus sa t i s fy ing  t h e  above condition t h a t  

Launch Vehicle Capabili ty 

There are two p o t e n t i a l  launch vehic les  t h a t  provide e j ec t ed  payload 

The Ti tan  IIID 
masses i n  t h e  range of i n t e r e s t  f o r  t h i s  mission. They are the  planned 
space s h u t t l e  and T i t an  IIID topped by the  Centaur s tage .  
vers ion,  modified t o  accept t he  Centaur upper s tage ,  is  now ca l l ed  t h e  
T i t an  IIIE i n  L e w i s  Research Center r epor t s .  The payload capab i l i t y  in j ec t ed  
i n t o  an in t e rp l ane ta ry  t r a j e c t o r y  f o r  these  two launch systems is  shown i n  
f igu re  l l ( a )  as a funct ion of t he  departure  o r b i t  energy, C3. 
of  a t h i r d  s t age  (e .g . ,  t h e  TE-364-4) t o  the  launch vehic le  combination does 
not  become e f f e c t i v e  u n t i l  Cg values of over 50 are required.  
f i gu res  6 shows t h a t  such values  are n o t  necessary f o r  t h i s  mission. The 
seven-segment Titan/Centaur combination, i f  developed, would provide a 
capab i l i t y  midway between those shown. 

The addi t ion  

Reference t o  

If t h e  launch vehic les  are t o  leave the  Cape Kennedy launch f a c i l i t y ,  
then t h e  launch azimuth w i l l  be r e s t r i c t e d  t o  be between approximately 44' 
and 114' where 90' (measured from due north)  represents  a due e a s t  launch. 
If the  dec l ina t ion  of  t he  departure  conic asymptote exceeds the  o r b i t  i n c l i -  
nat ions poss ib l e  from the  launch s i t e ,  then a dogleg o r  plane change maneuver 
i s  required of  t h e  launch vehicle .  This w i l l  reduce t h e  payload considerably 
below those shown i n  f i g u r e  11(a) .  This problem has been inves t iga ted  f o r  
t h e  Ti tan  IIIE/Centaur launch vehic le  depart ing from Cape Kennedy with a 
launch energy Cg = 10 km2/sec2. The r e s u l t s  are given i n  f igu re  l l ( b ) ,  which 
shows t h e  poss ib l e  departure  dec l ina t ions  as a func t ion  of the  o r b i t a l  coast  
t i m e  required of t h e  Centaur s tage.  Also shown i s  a band containing launch 
azimuths between t h e  l i m i t s  of 44" and 114'. An examination of t h e  launch 
oppor tuni t ies  contained i n  f igu res  6 shows t h a t  a worst case occurs i n  1988 
( f ig .  6(g))  having a departure  dec l ina t ion  o f ,  a t  most, 50'. 
ure  l l ( b ) ,  t h i s  dec l ina t ion  i s  poss ib l e  f o r  coast  per iods of approximately 
1 hour and launch azimuth s l i g h t l y  below 114'. 
launch azimuth problems e x i s t  f o r  t he  range of s e l ec t ed  launch da tes  unless 
Centaur o r b i t a l  coast  per iods of a t  l e a s t  1 hour are not  achieved by t h e  
la te  1980's. 

From f i g -  

I t  therefore  appears t h a t  no 

Orbi t S e 1 e c t i on 

A t  t h i s  po in t ,  it is poss ib le  t o  select  approach v e l o c i t i e s  a t  Venus 
which a r e  representa t ive  o f  t h e  time period under considerat ion (1983 t o  
1990). Also, using t h e  launch vehic le  performance curves ( f i g .  l l ( a ) )  , a 
range of p l ane t  approach masses can be estimated from t h e  Cg information 
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shown i n  f igu res  6. 
becomes poss ib l e  t o  e s t a b l i s h  a range of o r b i t  e c c e n t r i c i t i e s  wi th in  the  
capabi li ties of s e l e c t e d  systems. 

For any given propuls ion system and payload, it then - 

Estimated spacec ra f t  masses can be obtained from Brown, Elachi ,  Jordan, 
Laderman, and Thompson ( r e f .  31) and Brandenburg and Spadoni [ r e f .  33). 
These are s t u d i e s  of  nea r -c i r cu la r  mapping o r b i t s  (using e i t h e r  s o l a r  c e l l  
o r  RTG power systems),  and t h e  masses presented can, f o r  t h a t  reason,  
probably be regarded as minimum values .  From Scof ie ld  ( r e f .  34) ,  t he  
d e t a i l s  of the  Viking propuls ion system have been se l ec t ed  as typ ica l  of 
cu r ren t  technology. 
f o r  t h i s  system: one using t h e  planned va lue  f o r  the  Viking mission and 
the  o the r  using t h a t  f o r  a mission t o  t h e  moons of Mars. 

Two d i f f e r e n t  propel lan t  loadings have been examined 

The f a c t o r s  and opt ions j u s t  described a r e  i l l u s t r a t e d  i n  f i g u r e  12 (a ) ,  
where ve loc i ty  change required t o  e s t a b l i s h  a given o r b i t  [with and without 
p e r i a p s i s  ro t a t ion )  i s  p l o t t e d  as a func t ion  of o r b i t  e c c e n t r i c i t y .  Super- 
imposed on t h i s  graph are t h e  c a p a b i l i t i e s  of t h e  T i t an  IIIE/Centaur and 
Shut t le /Centaur  launch vehic les  used with a Viking propulsion system and 
with assumed spacec ra f t  masses between 600 and 740 kg. 
f i g u r e  has been developed f o r  a Vm band between 3.5 and 5.5 km/sec and 
C3 = 10 km2/sec2, which represent  t y p i c a l  cases  f o r  t he  1983 t o  1990 time 
per iod.  These values  include allowance f o r  a 15-day launch window. The 
uppermost hor izonta l  bands correspond t o  the  capab i l i t y  of t he  Shuttle/Cen- 
t a u r  and T i t an  IIIE/Centaur with a maximum b ip rope l l an t  c a p a b i l i t y  using 
t h e  Viking system p rope l l an t s  and hardware weights without tankage dimen- 
s i o n a l  l i m i t s .  
system propel lan t  loadings discussed by Scof i e ld  ( r e f .  34) as applied t o  
the  s e l e c t e d  payloads between 600 and 740 kg. 

This p a r t i c u l a r  

The two lower hor izonta l  bands represent  t he  two Viking 

From t h i s  f i g u r e ,  it i s  clear t h a t  t he  b ip rope l l an t  Viking propulsion 
system must be considered with o r b i t  e c c e n t r i c i t i e s  above 0.3 unless  space- 
craft masses considerably below 600 kg ( the  upper p a r t  of each ho r i zon ta l  
band) appear f e a s i b l e .  The extended Viking, on the  o the r  hand, can be used 
f o r  o r b i t  e c c e n t r i c i t i e s  between about 0 .2  and 0 .5 ,  depending on t h e  launch 
year  and p e r i a p s i s  loca t ion .  For maximum b ip rope l l an t  loadings,  which depend 
on t h e  launch veh ic l e  chosen, it would appear t h a t  only t h e  Shut t le /Centaur  
could achieve c i r c u l a r  o r b i t s  over a wide range of launch condi t ions.  For 
c i r c u l a r  o r b i t s ,  however, t h e  r e t r o  propuls ion system plus  i t s  p rope l l an t  
become the  dominant p a r t  of t h e  system, comprising b e t t e r  than 80 percent  
of  t h e  p l ane t  approach mass f o r  t h e  maximum b ip rope l l an t ,  T i t an  IIIE/Centaur 
case. Rather than car ry  such l a rge  amounts of p rope l l an t ,  it i s  probably 
more b e n e f i c i a l  t o  consider  t h e  development of a space s t o r a b l e  propulsion 
system t h a t  could have a s p e c i f i c  impulse of 385 sec  o r  higher .  This would 
reduce the  propuls ion system t o  a t  most 70 percent  of t he  approach mass and 
could allow the  considerat ion of  two separa te  spacecraf t  i n  a s i n g l e  s h u t t l e  
launch. Furthermore, t h e  development of a space s t o r a b l e  s t age  could be of 
be’nefit t o  o the r  f u t u r e  missions using the  Shut t le /Centaur  combination. 

The a l t e r n a t i v e  approach of designing t h e  spacec ra f t  f o r  e l l i p t i c a l  
o r b i t s  a t  Venus w i l l  complicate t h e  r ada r  and a t t i t u d e  cont ro l  system designs 
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and w i l l  r equi re  more power t o  compensate f o r  the  h i  o r b i t  a l t i t u d e s .  
More ser ious ,  however, i s  the  loss  of coverage f o r  h r e c c e n t r i c i t i e s  
(no mapping near  apoapsis) ,  which can double t h e  mapping time from 120 t o  
240 days. I t  i s  therefore  important t h a t  t he  spacecraf t  implicat ions of 
e c c e n t r i c  o r b i t s  be evaluated so  t h a t  some comparison can be made with the  
c i r c u l a r  o r b i t  approach and i t s  associated la rge  r e t r o  propulsion require-  
ments. 
f o r  e c c e n t r i c  o rb i t s .  For example, the  tandem two spacecraf t  launch possi-  
b i l i t y  i s  probably poss ib le  with the  Shuttle/Centaur launch vehic le  without 
t h e  need f o r  a space s t o r a b l e  propulsion system development. 

This repor t  w i l l  i l l u s t r a t e  some of the  spacecraf t  design options 

Figure 12(a) contains no information about a poss ib le  upper l i m i t  on 
o r b i t  eccent r ic i ty .  To b e t t e r  def ine t h i s  upper bound, a number of o r b i t  
maintenance ca lcu la t ions  were made f o r  po lar  o r b i t s  using t h e  same set  of 
launch and a r r i v a l  dates  chosen f o r  f i g u r e  12(a) .  The propulsive v e l o c i t y  
changes required t o  maintain the  p e r i a p s i s  a l t i t u d e  within +SO and +lo0 km 
are shown i n  f i g u r e  12(b) as a func t ion  of o r b i t  eccen t r i c i ty .  This f i g u r e  
has been developed f o r  the  1983 launch opportunity and employs no p e r i a p s i s  
ro t a t ion .  
a1 ti tude. 

A l l  o r b i t s  a r e  polar  and i n i t i a l l y  have a 500-km p e r i a p s i s  

These da ta  i l l u s t r a t e  two d i s t i n c t  fea tures  about t h e  e f f e c t  of eccen- 
t r i c i t y  and maintenance tolerances.  F i r s t ,  a smaller to le rance  increases  
the  number of  correct ions required but  reduces t h e  s i z e  of t h e  correct ion.  
Thus, t he  t o t a l  sum of  t h e  correct ions remains e s s e n t i a l l y  the  same within the  
range covered. 
e c c e n t r i c i t i e s  below about 0.50. 

Secondly, it appears t h a t  t h e  required correct ions vanish a t  

The d a t a  shown i n  f i g u r e  12(b) have been generated by numerical i n t e -  
gra t ion  of t he  three-body equations of motion. 
f i e d  by comparison with o ther  n-body and spec ia l  per turba t ion  computer 
programs. 

The r e s u l t s  have been ve r i -  

The e f f e c t  of  o t h e r  launch periods and p e r i a p s i s  r o t a t i o n  has a l s o  been 
For example, o t h e r  launch periods do not appear t o  a l t e r  crudely evaluated. 

r e s u l t s .  This was v e r i f i e d  by a check of the  1988 opportunity.  
placing the  p e r i a p s i s  over t he  equator by p e r i a p s i s  r o t a t i o n  reduces the  
correct ions t o  zero a t  e = 0.80. However, such an o r b i t  requi res  increased 
r e t r o  propulsion requirements. 

Also, 

Solar  E l e c t r i c  Propulsion 

As one of  t h e  spacecraf t  design opt ions,  the p o s s i b i l i t y  of using a 

This i s  motivated by the  p o s s i b l e  dual use of t he  power system 
s o l a r  e lectr ic  propulsion system, pr imar i ly  f o r  t he  r e t r o  maneuver, was con- 
s idered.  
(e. g. ,  f o r  propulsion and f o r  high-resolut ion radar  mapping). 

In the  case of  s o l a r  electric propulsion (SEP), it i s  usual  t o  represent  

This 
t h e  mission c a p a b i l i t y  by displaying the net o r  del ivered spacecraf t  mass 
exclusive of t he  propulsion system power supply o r  t h r u s t e r  subsystems. 
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p r a c t i c e  w i l l  be continued he re  bu t  w i l l  be done i n  
easy f o r  t h e  reader  t o  add i n  t h e  power supply mass i f  

way as  t o  make it 

The e f f e c t s  of Venus capture  o r b i t  e c c e n t r i c i t y  and SEP power l e v e l  ( a t  
Earth departure)  a r e  shown i n  f i g u r e  13 i n  terms of t h e  n e t  mass de l ivered  
(as  descr ibed above). 
uses t h e  T i t an  IIIE/Centaur launch veh ic l e  f o r  departure  and an Earth s t o r a b l e  
type r e t r o  s t age  f o r  t h e  r e t r o  maneuver. 
i n t o  o r b i t  and is a l s o  used t o  reduce, v i a  e l e c t r i c  propuls ion,  t h e  approach 
v e l o c i t y  ( indicated on t h e  f igu re )  a t  Venus a r r i v a l .  The b a l l i s t i c  approach 
speed i n  t h i s  case would normally be 3.0 km/sec. From t h i s  f i g u r e ,  it i s  
evident  t h a t  t he  main e f f e c t  of  t he  SEP system i s  t o  make ava i l ab le  t o  t h e  
payload a wide v a r i e t y  of power l eve l s  without l o s s  of spacec ra f t  mass a v a i l -  
a b l e  f o r  sc ience  o r  radar  experiments. 
approach speed achieved and ion  exhaust v e l o c i t i e s  requi red  t o  produce t h e  
h ighes t  n e t  m a s s .  
by t h e  v e r t i c a l  dash l i nes .  

This p a r t i c u l a r  case is  f o r  a 1983 opportuni ty  and 

The e l e c t r i c  power i s  dece lera ted  

Also shown i n  t h i s  f i g u r e  a r e  t h e  

These are pr imar i ly  a func t ion  of power l eve l  as ind ica ted  

One problem apparent from f i g u r e  13 i s  the  low value of ion  exhaust 
ve loc i ty  (C) a s soc ia t ed  with t h e  lower power l eve l s .  This occurs because t h e  
optimal value i s  lowered i n  an e f f o r t  t o  ga in  the  spacecraf t  acce le ra t ion  
needed t o  accomplish the  proper h e l i o c e n t r i c  t r a n s f e r .  
t h r u s t e r s  with such low values  of C are  not  a well-developed technology a t  
t h i s  time (e .  g. , t h e  SERT I1 C value  was approximately 42 km/sec) . However, 
t h i s  problem can be a l l e v i a t e d  by ad jus t ing  some of t he  o the r  mission param- 
e t e r s  as shown i n  f i g u r e  14. Here, the  bes t  value of C and the  n e t  space- 
c r a f t  mass a r e  shown as func t ions  of t h e  depar ture  and a r r i v a l  speeds ( r e l a -  
t i v e  t o  Earth and Venus) f o r  a power l eve l  of  5 kW a t  Earth.  
shows t h a t  a small chang?, perhaps only 0.5 km/sec, i n  the  departure  and 
a r r i v a l  speeds can be made t o  accommodate any des i red  o r  a v a i l a b l e  t h r u s t e r  
technology. 

E l e c t r o s t a t i c  

This f i g u r e  

Law thrust  capture- In  the  r e s u l t s  discussed so fa r ,  t h e  r e t r o  maneuver 
has been accomplished by a combination of SEP s t a g e  and an Earth s t o r a b l e  
r e t r o  s tage .  
e n t i r e  r e t r o  maneuver. 
t y p i c a l  case are shown i n  f i g u r e  15. Here, t he  n e t  mass i s  shown as a func- 
t i o n  of  t h e  t o t a l  t r i p  time, including the  time needed t o  e s t a b l i s h  t h e  o r b i t  
a t  Venus, f o r  a 15-kW ( a t  Earth) SEP system. The o r b i t  chosen i n  t h i s  
ins tance  i s  a c i r c u l a r  o r b i t  at an a l t i t u d e  of 1000 km above the  su r face  of 
Venus. This i s  an extreme case ( e l l i p t i c  o r b i t s  r equ i r e  l e s s  s p i r a l  time) 
bu t  shows t h a t  t he  t r i p  time can become much longer than t h e  150 days shown 
previously before  t h e  n e t  mass r e tu rns  t o  t h e  1000 kg l eve l .  
t h e  time requi red  t o  e s t a b l i s h  t h e  o r b i t  with t h e  low t h r u s t  system. Also, 
i t  was found t h a t  power l eve l s  h igher  than  before  are much more necessary.  

by t h e  higher  power l e v e l s ) ,  it was decided t h a t  t he  Earth s t o r a b l e  r e t r o  
approach was preferab le .  

Another obvious opt ion would be t o  use the  SEP system f o r  t h e  
This op t ion  has been examined and the  r e s u l t s  of a 

This i s  due t o  

is of  t hese  cons idera t ions  (longer time and t h e  higher  cos t  implied 

SoZm array Zimitations- Returning t o  t h e  space s t o r a b l e  r e t r o  case,  it 
appeared t h a t  l a rge  amounts of power, up t o  15 kW o r  h igher ,  could be 
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ommodated. However, su  
uc tu ra l  problems d 

some preliminary cons 
erence 36. This p a r t i c u l a  
ro l lup  a r r ay  t h a t  i s  deplo 
two d i rec t ions .  
before  the  y i e l d  s t r e s s  is  reached i s  shown i n  f i g u r e  16 as a func t ion  of t he  
power leve l .  A o shown are the  approximate dimensions of t h e  tape  t and 
t h e  a r r ay  i n  a 
extending the  4-m wide a r r ay  t o  eater lengths. This f i g u r e  i l l u s t r a t e s  
t h a t  t h e  a r rays  apparent ly  have 
t h r u s t  acce le ra t ions ,  p a r t i c u l a r l y  a t  t h e  lower power l eve l s .  

The acce lera t ion  l eve l s  t h i s  p a r t i c u l a r  design can w 

kW configurat ion.  Di f fe ren t  power l e v e l s  are a t t a i n  

f f i c i e n t  s t r eng th  t o  endure t y p i c a l  rocket 

Launch window considerations- Another f e a t u r e  t h a t  an SEP system could 
o f f e r  i s  an extended launch window. This i s  i l l u s t r a t e d  i n  f i g u r e  1 7 ,  where 
t h e  n e t  mass i s  shown as a func t ion  of time before  and a f t e r  t h e  des i red  
launch date .  
with a pe r i aps i s  a l t i t u d e  of 1000 km. The s o l i d  curves are f o r  t h e  high 
t h r u s t  case,  while t h e  dashed curves are f o r  t h e  SEP s tage .  The two curves 
shown f o r  t h e  SEP cases ind ica t e  t h e  e f f e c t  of including t h e  mass of t h e  
s o l a r  a r rays  i n t o  the  ne t  mass de l ivered .  
t h i s  f i gu re :  

Shown he re  a r e  data f o r  an intermediate  e c c e n t r i c i t y  of 0.5 

Two observations a r e  apparent from 

(1) The SEP approach does not g ive  a la rge  increase  i n  del ivered mass 
over t h e  high t h r u s t  a l t e r n a t i v e s .  

(2) While t h e  SEP approach widens t h e  launch window considerably,  t h e r e  
does no t  appear t o  be a ser ious  launch window problem f o r  t he  high t h r u s t  
method. 

An attempt was a l so  made t o  s i g n i f i c a n t l y  a l ter  t h e  Venus approach con- 
d i t i o n s  through appl ica t ion  of SEP t h r u s t  and f l i g h t  t i m e  changes. 
e f f o r t  was abandoned once it became apparent t h a t  it could not  be done with- 
ou t  l a r g e  decreases i n  the  de l ivered  mass. The hope had been t h a t  two sepa- 
rate spacecraf t  o r b i t s  could be e s t ab l i shed  with a la rge  angle  between t h e i r  
major axes. 

This 

ary ana lys i s  made here ,  it does not  appear 
t / s t a g e  has any outs tanding advantages f o r  

maneuver energy requi red  a 
of  t h e  des i red  

of t i m e  (up t o  50 addi t iona l  days 
at Venus using the  SEP t h r u s t  was 

One apparent advantage f o r  t h e  SEP system i s  t h e  a b i l i t y  t o  de l ive r  a 
wide range of power l eve l s  with l i t t l e  o r  no reduct ion i n  the  mass ava i l ab le  

13 



f o r  o the r  spacecraf t  func t ions  o r  science instruments.  Should t h e r e  develop 
a need f o r  power l e v e l s  up t o  20 kW i n  Venus o r b i t ,  then an SEP system would 
be given more d e t a i l e d  considerat ion.  

Swath Width 

One of t h e  most important mission operat ion parameters i s  the  swath 
width swept out  by t h e  r ada r  beam as t h e  spacecraf t  o r b i t s  t h e  p l ane t .  
d i r e c t l y  a f f e c t s  t h e  amount of area coverage obtained and t h e  power required.  
Also, toge ther  with the  p l a n e t ' s  r o t a t i o n  and mapping sequence s t r a t e g y ,  it 
cont ro ls  t he  degree of coverage overlap from swath t o  swath. 

I t  

The f a c t o r s  t h a t  cont r ibu te  t o  the  determinat ion of t he  swath width a r e  
i l l u s t r a t e d  i n  f i g u r e  18(a) .  
depression angle,  a, a l t i t u d e ,  H ,  and t h e  range beamwidth, Bp, a re  a l l  fac- 
t o r s  t h a t  a f f e c t  the  swath width,  W. 

From t h i s  f i g u r e  it can be  seen t h a t  t he  

Cer ta in  f a c t s  are evident  from f i g u r e  18(a) .  F i r s t ,  t h e  depression 
angle ,  a, cannot be so small as t o  let  the  beam go o f f  the  horizon of the  
p l ane t ;  thus it must be g r e a t e r  than  amin: 

However, a is  normally s e t  a t  some value between amin and n /2  f o r  a v a r i e t y  
of o t h e r  reasons.  A t  small values  of a, t h e  beam passes through more atmo- 
sphere and a l s o  r e f l e c t s  back a much reduced p a r t  of t h e  inc ident  beam t o  t h e  
antenna. A t  t h e  o the r  extreme (a = n / 2 ) ,  t h e  range r e so lu t ion  is  degraded 
and t h e  swath width and coverage reduced i f  t he  antenna he ight  i s  f ixed .  

Another f a c t o r  a f f e c t i n g  t h e  choice of depression angle i s  t h e  o r b i t  
s e l e c t i o n .  For  high e c c e n t r i c i t y  o r b i t s ,  t h e  a l t i t u d e  w i l l  change i n  time 
and the  beam w i l l  eventual ly  rise above t h e  p lane tary  horizon (see eq. ( 2 ) ) .  
Thus, as ind ica t ed  i n  f i g u r e  19, t h e  f r a c t i o n  of t he  p l ane t  covered can drop 
o f f  r ap id ly  as the  o r b i t  e c c e n t r i c i t y  increases .  
f o r  low values  of depression angle  as i l l u s t r a t e d  i n  t h e  case  of a = 30'. 

This i s  p a r t i c u l a r l y  t r u e  

However, while t h e  coverage can b e  adequate f o r  such cases as a = 60°, 
t h e  s l a n t  range can become very l a rge  a t  t h e  po in t  a t  which t h e  beam begins 
t o  leave t h e  p l a n e t ' s  sur face .  
ments (as w i l l  be shown l a t e r ) .  The condi t ions a t  which t h i s  occurs are 
determined from the  r e l a t i o n s :  

This can lead t o  high radar  power require-  
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and 

R + H = A  
1 + e cos u m ax 

Thus 

I (1 + e ) ( R  i- H p )  - (R + H )  

e(R + H )  U = cos-1 max (4) 

where 

U maximum t rue  anomaly of o r b i t  

H p e r i a p s i s  a l t i t u d e  

e o r b i t  e c c e n t r i c i t y  

max 

P 

In the  spec ia l  case where the  p e r i a p s i s  of a polar  o r b i t  i s  over t he  p l a n e t ' s  
equator,  Umax i s  t h e  maximum l a t i t u d e  north and south of t he  equator f o r  
which coverage i s  possible .  

One method of avoiding the  high powers associated with high values of 
a and concomitant s l a n t  range i s  t o  terminate mapping a t  some poin t  p r i o r  t o  
p lane t  limb encounter. 2 3 
are a l s o  shown i n  f igu re  19. 

The e f f e c t s  of terminating t h e  mapping when H / H  P 

Figure 18(b) shows a s impl i f ied  enlargement of t he  upper por t ion  of 
f igu re  18(a) .  
f i gu re  therefore  appl ies  t o  high values of a and near  pe r i aps i s .  
upper o r  lower end of t h e  swath, t h e  curvature of t h e  p lane t  may have t o  be 
included. From t h i s  f i g u r e ,  t he  following simple r e l a t i o n s h i p  can be 
derived : 

In  p a r t i c u l a r ,  t h e  curvature of t h e  p lane t  i s  ignored; t he  
Near the  

W s i n ( a  + By)  
H s i n  a s i n  Bp = 

More exact re la t ions , 'which  apply over the  e n t i r e  swath, have been given by 
Klopp e t  a l .  (ref. 2 ,  p. 234, vol. IV) .  However, equation (5) expresses the  
dominant i n t e r a c t i o n s  between the  v a r i a b l e s  of i n t e r e s t .  Thus, f o r  given 
values of a ,  H ,  and W, a value of Bp can be determined. 
t h e  r e l a t i o n  between Bp and antenna he ight ,  D ,  w i l l  b e  discussed. 

In  the  next sec t ion ,  
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Antenna Size 

The antenna he ight ,  D,  is  r e l a t e d  t o  t h e  antenna range beam width by 

- 1.2% 8, - - D 

Typical values of D and A are 2 m and 15 cm, respec t ive ly .  Thus it i s  c l e a r  
t h a t  Bp w i l l  probably be r a t h e r  small ( = S o )  s o  t h a t  equation (5) can be fur -  
t h e r  s impl i f ied  t o  

w s i n 2  a 
'r H 

The choice of  wavelength, A ,  i n  equation (6) is  l imi ted  by atmospheric 
absorption a t  the lower end and, f o r  a given swath width, by the  antenna 
he ight  a t  t he  upper end. 
t h a t  produces t h e  des i red  swath width i s  much too la rge  f o r  standard space- 
c r a f t  s i ze  and packaging dimensions. In such cases,  it may be necessary t o  
i l lumina te  a much l a r g e r  swath than i s  ac tua l ly  processed by the  antenna. 
This i s  wasteful of power but  prevents t he  problems o f  handling an unwieldy 
antenna. For t h i s  s tudy,  the antenna was l imi ted  t o  2 m i n  height .  

In  some cases,  it may occur t h a t  t he  antenna he ight  

The determination of antenna length i s  much more complicated because i t  
involves the  i n t e r a c t i o n  between t h e  r e a l  antenna length,  which s e t s  the  
ground f o o t p r i n t  i l luminated by each pulse ,  and the  syn the t i c  antenna length,  
which is generated by the  motion of t h e  r e a l  antenna along t h e  spacecraf t  
t r a j e c t o r y .  

The azimuth beam angle ,  is  found from the  antenna length,  L ,  as i n  
equation (6) : 

1.25X 
L 8, = - 

Thus the  ground f o o t p r i n t  is  s e t  by Pa, B y ,  and a.  However, t h e  same antenna 
can rece ive  many pulse  re turns  from a given poin t  on the  sur face  as it moves 
along i t s  path.  If these  r e tu rns  a re  proper ly  phased and combined, i t  w i l l  
appear t h a t  t h e  receiving antenna is much longer than it ac tua l ly  i s .  
various d i f f e r e n t  po in ts  within the  f o o t p r i n t  can be i d e n t i f i e d  i n  range by 
using t h e  t i m e  of t h e  r e t u r n s  and i n  azimuth by using t h e  doppler frequency 
s h i f t  caused by t h e  r e l a t i v e  l ine-of -s ight  ve loc i ty  between t h e  ground and 
the  moving antenna. 
t o  t h e  physical  length of t he  foo tp r in t  i n  t h e  azimuth d i r e c t i o n  a t  each 
range. 

The 

The length of t h i s  syn the t i c  antenna i s  therefore  equal 

I n  order  t h a t  t h e r e  be no ambiguity i n  the  range information, each pulse  
must c l e a r  t h e  swath before  t h e  next one en te r s .  This s e t s  t he  following 
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l i m i t  on the  pu l se  r e p e t i t i o n  frequency ( P R F ) :  

PRF s c/2W cos a (see f i g .  18(b))  (9) 

For the  given swath width and depression angle,  equation (9) then represents  
an upper l i m i t  on PRF. 
no ambiguous r e tu rns  i n  t h e  azimuth information. 

Another l i m i t  i s  s e t  by t h e  requirement t h a t  t h e r e  be 
This i s  expressed by: 

- 4v :: L PRF 

This r e l a t i o n ,  which i s  a l so  used by Klopp e t  a l .  ( r e f .  2 ) ,  p laces  the  s i d e  
lobes of t he  syn the t i c  antenna ou t s ide  the  main lobe of t he  r e a l  antenna. 
Compared t o  another r e l a t i o n  f requent ly  used (see r e f .  3 2 ) ,  equation (10) 
incorporates  an add i t iona l  f a c t o r  of 2 t o  ensure t h a t  t he  syn the t i c  antenna 
s i d e  lobes are well ou ts ide  the  r e a l  antenna main lobe. 

Since t h e r e  can be only one value of PRF, equations (9) and (10) can be 
equated, giving 

8VW cos a 
e L =  

This g ives  a value f o r  L which depends on p e r i a p s i s  a l t i t u d e ,  depression 
angle ,  swath width,  and spacecraf t  ve loc i ty .  

Typical values of antenna he igh t  and length are shown i n  f i g u r e  20 as a 
funct ion of  o r b i t  e c c e n t r i c i t y .  These values are f o r  a wavelength of 13 cm 
and two d i f f e r e n t  depression angles.  Also shown i s  the  e f f e c t  of  l imi t ing  
the  a l t i t u d e  r ise t o  H I 3H These values o f  antenna length are based on 
the  p e r i a p s i s  v e l o c i t y  and a r e  the re fo re  long enough t o  account f o r  t he  
h ighes t  v e l o c i t y  within t h e  swath. For  e l l i p t i c  o r b i t s ,  the  angle  $ (see 
f i g .  18(a))  w i l l  eventual ly  devia te  s i g n i f i c a n t l y  from a and approach zero. 
Referr ing t o  equation (11),  it can be seen t h a t ,  f o r  a = 60°, L can be up t o  
twice a s  long i f  i t  i s  s i zed  f o r  t h e  limb runoff condition. Thus the  antenna 
lengths  shown are simultaneously s i zed  f o r  t h e  h ighes t  v e l o c i t y  and smal les t  
value o f  $ with in  t h e  swath. The swath widths assoc ia ted  with t h e  antenna 
value shown i n  f i g u r e  20 are included i n  f i g u r e  21. 
number o f  o r b i t s  , N, between successive swaths and the  percentage overlap 
desired.  

P'  

These depend on t h e  

In  f i g u r e s  20 and 21,  N = 1 and the  overlap i s  20 percent .  

From f i g u r e  20, it is  clear t h a t  the  antenna dimensions can become 
imprac t ica l ,  p a r t i c u l a r l y  when a I 30° .  
required antenna becomes both very long and ve ry  narrow. 
antenna he ight  i s  approaching the  wavelength, and i t  may become d i f f i c u l t  t o  
cons t ruc t  such an antenna and maintain p red ic t ab le  beam c h a r a c t e r i s t i c s .  

A t  very high e c c e n t r i c i t i e s ,  t he  
In t h i s  case t h e  
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The only o the r  cons t r a in t  on antenna length i s  due t o  the  minimum reso- 
l u t i o n  poss ib l e ,  t h a t  i s ,  

ax = L / 2  

However, t h i s  r e p r e s e n t s , t h e  b e s t  poss ib le  case and r equ i r e s  t h a t  a l l  t he  
information i n  t h e  f o o t p r i n t  be u t i l i z e d .  
t h e t i c  ape r tu re  system and may l ead  t o  unacceptable da t a  r a t e s .  For e l l i p t i c  
o r b i t s ,  t he  swath width w i l l  increase  as the  spacecraf t  moves away from p e r i -  
aps i s .  Eventually,  it would become d i f f i c u l t  t o  process a l l  the  da t a  i n  t h e  
beam f o o t p r i n t  a t  t h e  same re so lu t ion .  Also, it may be prudent t o  i l lumina te  
a l a rge r  area than processed i n  order  t o  a l l e v i a t e  any poss ib l e  v a r i a t i o n  a t  
t h e  edge of t he  f o o t p r i n t  due t o  a t t i t u d e  cont ro l  v a r i a t i o n s .  I t  w i l l  there-  
f o r e  be t e n t a t i v e l y  assumed t h a t  only t h e  swath width i l luminated a t  p e r i -  
a p s i s  w i l l  be  processed throughout the  mapping s t r i p  and t h a t  t he  processed 
swath w i l l  l i e  a t  t h e  nea r  edge of t he  swath i n  order  t o  ensure maximum l a t i -  
tude coverage. 
i n t eg ra t ed  between c e r t a i n  t ime i n t e r v a l s  only. Also, the  s ta r t  of t h i s  time 
i n t e r v a l  must change with t h e  spacec ra f t  a l t i t u d e .  Some scheme using an 
a l t ime te r  o r  the  doppler frequency s h i f t  from the  center  of t h e  f o o t p r i n t  (o r  
i t s  time i n t e g r a l )  as an i n d i c a t o r  of t h e  instantaneous a l t i t u d e  must be 
incorporated i n  the  radar  system. This may be necessary i n  any event f o r  
e l l i p t i c  o r b i t s  as t h e r e  w i l l  probably be a need t o  know the  spacec ra f t ' s  
r a d i a l  ve loc i ty  a t  each po in t  i n  t h e  o r b i t .  

This implies a f u l l y  focused syn- 

This introduces a complexity i n  t h a t  t h e  r e tu rns  must now be 

F ina l ly ,  from a p r a c t i c a l  s tandpoin t ,  antenna lengths  w i l l  be otherwise 
l imi t ed  t o  15 m i n  t h i s  study. 

The required su r face  r e s o l u t i o n  a l s o  impacts t he  pu l se  length,  T, i n  
t h a t  t h e  range r e so lu t ion  i s  l imi t ed  t o  m / 2 ,  where e i s  t h e  speed of l i g h t .  
The p ro jec t ion  of  t h i s  l i m i t a t i o n  t o  t h e  p lane tary  sur face  produces the  
requirement t h a t  

2Ar cos $ 
e T S  

where I)J is  t h e  angle between t h e  radar  beam and the  su r face  ( f ig .  18 (a ) ) .  
The most s t r i n g e n t  condi t ion r e s u l t s  from considerat ion of the  edge of t he  
swath nea res t  t he  radar ,  and the  pulse  length must be designed t o  accommodate 
t h i s  condition. I f  pulse  compression i s  used, t he  e f f e c t i v e  pulse  length 
r e s u l t i n g  from .compression must s a t i s f y  the  above r e l a t i o n s h i p .  

Combined Effec t  

To i l l u s t r a t e  t h e  var ious combined e f f ec t s  of t he  va r i ab le s  described s o  
far  i n  t h i s  s ec t ion ,  t h e  swath width has been p l o t t e d  i n  f i g u r e  2 2  as a func- 
t i o n  of o r b i t  e c c e n t r i c i t y  f o r  a p e r i a p s i s  a l t i t u d e  of 500 km. 
i n  t h i s  same f i g u r e  are t h e  assoc ia ted  antenna dimensions and t h e  number of 

Also shown 
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o r b i t s  between successive swaths. In  a l l  cases t h e  antenna has been s i zed  
f o r  a mapping swath between p lane tary  l a t i t u d e s  of + 6 0 ° .  

From the  previous considerat ions of o r b i t  i n s e r t i o n  ( f i g .  12(a) ) ,  the  
e c c e n t r i c i t y  range discussed t h e r e  (0.2-0.5) can be seen t o  i n t e r s e c t  t h e  
one-, two-, and three- revolu t ion  curves a t  W 7: 50 km and L 7 m. Also, it 
can be seen i n  t h i s  f i g u r e  t h a t  t h e  antenna can become too  long f o r  swath 
widths of 100 km and too  high f o r  swath widths l e s s  than 50 km. The antenna 
he ight  shown is t h a t  necessary t o  exac t ly  i l lumina te  the  given swath width a t  
pe r i aps i s .  If the  antenna i s  l imi ted  t o  2 m i n  he ight ,  then, f o r  swaths l e s s  
than 50 km wide, t h e  s i z e  of  the  f o o t p r i n t  i l lumina ted  w i l l  be  excessive.  
This w i l l  r e s u l t  i n  higher  t r a n s m i t t e r  power than would o r d i n a r i l y  be requi red  
with a r e s u l t i n g  inc rease  i n  spacec ra f t  weight. 
widths less than 50 km were no t  considered i n  t h i s  study. Thus, it i s  poss i -  
b l e  t o  i s o l a t e  a reg ion  i n  f i g u r e  2 2  between the  ranges 0.2 2 e < 0 . 5  and 
50 I W S 100 km as being a p re fe r r ed  domain of operat ion.  Other f i g u r e s  of  
t h i s  type have been generated f o r  o t h e r  values of maximum plane tary  l a t i t u d e  
a t  r ada r  cu tof f .  The dominant e f f e c t  of changing the  cutoff  l a t i t u d e  is  t o  
change the  p o s i t i o n  of t h e  antenna length curve a very small amount. 
should be emphasized, however, t h a t  t hese  curves are f o r  a f ixed  20 percent  
overlap between successive swaths a t  pe r i aps i s .  
of t h i s  type t h a t  could be generated,  depending on the  s c i e n t i f i c  va lue  
a t tached  t o  high overlap.  
considered before  any addi t iona l  progress  can be  made i n  the  s e l e c t i o n  of the  
var ious system design parameters.  

As a consequence, swath 

I t  

Thus, t he re  are many curves 

A number of o the r  important f a c t o r s  must a l s o  be  

Power Requirements 

Perhaps t h e  most important a d d i t i o n a l  parameter i s  the  power t h a t  must 
be suppl ied t o  the  spacec ra f t  i n  genera l  and t o  t h e  radar  system i n  p a r t i c -  
u l a r .  A convenient expression f o r  r ada r  peak r ad ia t ed  power ( r e f .  32) i s  

47rkTX 2BR4 (S/N) R ( B )  
n2L2020 AX A r N  

P =  

where 

P peak power, W 

k Boltzmann's cons tan t ,  J / ' K  

T e f f e c t i v e  r ece ive r  temperature,  O K  

S r 
B bandwidth, cps 

R s l a n t  range, m 

s igna l - to-noise  r a t i o  
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0 

AX azimuth t a r g e t  element, m 

A r  range t a r g e t  element, m 

N number of pu lses  in tegra ted  

1? antenna ef f i c i  ency 

R(R) system losses  and atmospheric a t tenuat ion  

s c a t t e r i n g  c o e f f i c i e n t  (a funct ion of incidence angle) 

The average power can be w r i t t e n  

- 
P = P(PRF)T 

where 

T = pulse  durat ion,  sec  

Thus, 

- m4x2 
AX ArtoL2D2 P =  

where 

K =  41rkT (S /N)  R (R)  
or12 

B = l / . c  

= N/PRF; i n t e g r a t i o n  time, s ec  

For a f u l l y  focused s y n t h e t i c  aper ture  r a d a r  system, 

Therefore, 

- KR3AV 
LD2 AX A r  P =  

(14) 
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Equation (16) now contains most of t he  var iab les  discussed up t o  t h i s  
po in t  w i t h  t h e  exception of t he  f a c t o r  K, which includes t h e  less c e r t a i n  
parameters i n  t h i s  analysis .  The values used t o  evaluate  K were 

k = 1 . 3 8 ~ 1 0 ' ~ ~ ,  J / O K  

T = 1000° K 

CY = 10.0133 cos $ / ( s in  I) + 0.1 cos I ) )3  

$ = angle of incidence t o  surface 

( r e f .  32) 

rl = 0.85 

10 logloR(R) = (R/H)0.6f2 + 3 dB ( r e f .  31)2 

Actually,  many o ther  choices f o r  these  parameters could be j u s t i f i e d  he re ,  
but  these  were se lec ted  as typ ica l .  Furthermore, t he re  i s  considerable 
general  uncertainty about T ,  CY, and the  required value of S/N ( f o r  a more 
d e t a i l e d  discussion,  see ref. 2). Thus, it would not  appear t h a t  g r e a t e r  
d e t a i l  could be j u s t i f i e d  f o r  a preliminary analysis  of t h i s  s o r t ;  r a t h e r  a 
search w i l l  be made f o r  regions of i n t e r e s t  using a typ ica l  value of K before 
going i n t o  more d e t a i l .  

Again, t h e r e  i s  a la rge  number of i n t e rac t ing  v a r i a b l e s  and requirements. 
From the discussion of  the science requirements, a value of 100 m appears t o  
be the m a x i m u m  acceptable value f o r  both AP and Ax. The s e l e c t i o n  of f r e -  
quency is more complicated as it a f f e c t s  antenna s i z e  and power as well  as 
the  science information. From equations (6), ( 7 ) ,  and (11) come expressions 
f o r  antenna length and v e r t i c a l  height  which can be s u b s t i t u t e d  i n t o  equa- 
t i o n  (16) : 

This shows t h a t  a long wavelength i s  des i rab le  from a power standpoint.  
However, a t  longer wavelengths, t he  antenna w i l l  need t o  be very l a rge  t o  
keep* the  des i red  sur face  swath a t  pe r i aps i s .  
construct ion of very l a rge  antennas f o r  space operation is  a dominant problem; 
thus the lowest wavelength cons is ten t  with atmospheric a t tenuat ion  l i m i t s  is 
o f t e n  used. A wavelength of 13 cm appears t o  be adequate from t h i s  po in t  of 
view and i s  s e l e c t e d  f o r  use here.  

From a p r a c t i c a l  s tandpoint ,  

The power computed by equation (17) i s  j u s t  t h e  emitted radar  power and 
not  the  input  (dc) power t o  the  radar system. From t h e  ana lys i s  of Klopp 

'The 3 dB has been added t o  account f o r  system losses .  
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e t  a l . ,  an es t imate  of t o t a l  radar  system power is  

Input power = 100 + 375 W (18) 

This r e l a t i o n  i s  based on a number of d i f f e r e n t  coherent r a d a r  systems and 
excludes t h e  recorder  power. 

The t o t a l  (dc) power l eve l s  assoc ia ted  with t h e  region of i n t e r e s t  a t  a 
range and azimuth r e so lu t ion  of 100 m each a r e  shown i n  f i g u r e  23(a).  
same boundaries apply he re  as before  i n  f i g u r e  22 with the  l i m i t s  e s t ab l i shed  
on both swath width and e c c e n t r i c i t y .  
t i o n  of t he  N curves and t h e  e c c e n t r i c i t y  curves a r e  r ep resen ta t ive  ones t h a t  
w i l l  be inves t iga ted  l a t e r  i n  g rea t e r  d e t a i l .  Again, the  power i s  determined 
a t  t h e  60' l a t i t u d e  po in t .  

The 

In t h i s  diagram the  poin ts  of i n se r -  

The 60' l a t i t u d e  l i m i t  assumed i n  f i g u r e  23(a) s a t i s f i e s  t he  minimum 
requirements f o r  su r face  coverage described e a r l i e r  i n  t h e  sc ience  requi re -  
ments s ec t ion .  Figures 23(b),  ( c ) ,  and (d) show t h e  same re l a t ionsh ips  f o r  
maximum l a t i t u d e s  of 65', 7 0 ° ,  and 75'. 
e c c e n t r i c i t y  cases are el iminated as the  coverage requirements increase .  This 
r e s u l t s  from the  f a c t  t h a t  t h e  high e c c e n t r i c i t y  o r b i t s  do not  reach high 
l a t i t u d e s  before  p l ane t  limb runoff occurs;  thus the  coverage requirements a r e  
not  s a t i s f i e d .  In  genera l ,  power leve ls  between 120 and 2000 W (dc) appear 
necessary f o r  the  range of coverages shown. 
r e s t r i c t i n g  considerat ion t o  swath widths between 50 and 100 km (antenna 
length and he ight  l i m i t s )  . 

These curves show t h a t  the  higher  

These values  are se l ec t ed  by 

For any given coverage requirement,  percent  overlap,  and r e so lu t ion ,  
t h e r e  w i l l  e x i s t  a s e r i e s  of spacecraf t  design p o s s i b i l i t i e s .  Those o r b i t s  
with low e c c e n t r i c i t y  w i l l  correspond t o  l a rge  r e t r o  propuls ion system mass 
requirements and t o  a low spacecraf t  mass due t o  t h e  lower power requirement. 
This s i t u a t i o n  w i l l  b e  reversed f o r  high e c c e n t r i c i t y  o r b i t s .  F ina l ly ,  t o t a l  
spacecraf t  mass ( including propulsion) w i l l  i nc rease  with an inc rease  i n  the  
coverage requirement due t o  the  elevated power requirements and t h e  unavail-  
a b i l i t y  o f  h ighly  eccen t r i c  o r b i t s  t h a t  s a t i s f y  t h e  higher coverage goals .  
I t  should be noted, however, t h a t  the  p l ane t  su r f ace  a rea  covered v a r i e s  a s  
t he  s i n e  of the  maximum l a t i t u d e  s o  t h a t  t h e r e  i s  very l i t t l e  change i n  the  
a rea  covered by A = 60° as compared t o  A = 75'. 
t a n t  l a t e r  when t h e  spacec ra f t  designs a r e  considered i n  more d e t a i l .  

This w i l l  become more impor- 

ORBITAL OPERATIONS 

Another f a c t o r  t h a t  must be taken i n t o  cons idera t ion  is t h e  operat ions 
t h e  spacec ra f t  must perform during a t y p i c a l  mapping cycle.  
o r b i t s ,  continuous mapping i s  poss ib l e  but  leads t o  considerable  overlap from 
swath t o  swath due t o  t h e  slow r o t a t i o n  of t h e  p l ane t .  
a considerable  occu l t a t ion  problem f o r  communication and/or power supply 
systems. 

For c i r c u l a r  

There can a l so  e x i s t  

This i s  i l l u s t r a t e d  i n  f i g u r e  24, where the  o r b i t  per iod  and minimum 
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unocculted time (complete occul ta t ion  a t  apoapsis) are shown as a funct ion of 
o r b i t  e c c e n t r i c i t y  f o r  H This shows t h a t  t he  problem of excessive 
occu l t a t ion  time is  main P y r e s t r i c t e d  t o  low e c c e n t r i c i t y  o r b i t s  where about 
h a l f  the  o r b i t  per iod can be spent  e i t he r  i n  Sun o r  Earth occul ta t ion .  In  
more e l l i p t i c a l  o r b i t s ,  t h e  spacecraf t  is unocculted most of t h e  time. I t  i s  
r a t h e r  clear from t h i s  f i g u r e  t h a t  t h e r e  are two d i s t i n c t  regions i n  which 
s u b s t a n t i a l l y  d i f f e r e n t  spacecraf t  could operate .  F i r s t  t h e r e  i s  t h e  low 
e c c e n t r i c i t y  region between e = 0.0 and e = 0.2 where considerable occu l t a t ion  
of t h e  Sun and/or Earth could occur. This region i s  a l s o  character ized by 
many ro t a t ions  between mapping swaths unless  very high overlap is required.  
However, i t  should a l s o  be noted t h a t  both s ides  of  t h e  p lane t  could be mapped 
during each o r b i t ,  thus  reducing t h e  mapping time t o  120 days f o r  t h e  whole 
p lane t .  The higher  e c c e n t r i c i t y  region w i l l  genera l ly  r equ i r e  t h e  f u l l  
240-day r o t a t i o n a l  per iod  of Venus f o r  complete mapping. 
o r b i t s  a r e  required pe r  mapping swath (see f i g .  23) with the  time near  apo- 
aps i s  ava i l ab le  f o r  communicating da ta  t o  Earth. 

= 500 km. 

However, far  fewer 

Power P r o f i l e s  

Considering the  previous range of o r b i t  e c c e n t r i c i t i e s  ind ica ted  by 
propuls ive requirements, t h e  two extreme cases of e = 0.2 and e = 0.5 w i l l  be 
examined i n  s u f f i c i e n t  d e t a i l  t o  i d e n t i f y  some of t h e  major power requi re -  
ments. In  p a r t i c u l a r ,  t h e  coverage and reso lu t ion  required determine the  
d a t a  load t h a t  must be t ransmi t ted  during t h e  remaining unocculted time i n  the  
o r b i t .  In  what follows, t he  maximum occul ta t ion  time w i l l  be assumed f o r  each 
o r b i t  t o  ensure a conservative r e s u l t  t h a t  is independent of t h e  p a r t i c u l a r  
launch opportunity . 

The case of e = 0.2 is i l l u s t r a t e d  i n  f igu re  25. From previous f igu res  
i t  can be determined t h a t  N I 3 is  requi red  f o r  a swath overlap of 220 percent .  
In  the  case depicted,  t h e  swath covers 60' north and south of t h e  equator;  
mapping w i l l  r equi re  about 0.5 hour of o r b i t  time every t h r e e  o r b i t s .  
s o l a r  c e l l s  a r e  used, then t h e  spacecraf t  w i l l  have t o  be supported by bat-  
t e r i e s  f o r  0.75 hour pe r  o r b i t .  
dedicated t o  mapping near  p e r i a p s i s ,  then  power f o r  about 2.75 hours w i l l  be 
suppl ied by b a t t e r i e s ,  with the  remaining 3 hours (per  t h ree  o r b i t s )  l e f t  f o r  
b a t t e r y  charging and communications t o  Earth. Thus, t h e r e  are s t rong  i n t e r -  
ac t ions  between the  power, radar ,  and communications subsystems on such an 
o r b i t .  

If 

If t h e  spacecraf t  o r i en ta t ion  is t o t a l l y  

I n  order  t o  generate  a power p r o f i l e  f o r  
a d a t a  rate i s  determined from t h e  formula 

d a t a  rate = PRF ( k )G  

t h e  o r b i t  shown i n  f i g u r e  25, 

119) 
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where 

G number of binary b i t s  i n  t h e  image gray s c a l e  

t time allowed f o r  mapping 
map 

tsend da ta  transmission time allowed 

A number of assumptions about t he  communications subsystem must a l so  be made 
before  t h e  communications power can be  determined. 
delayed u n t i l  a l a t e r  s e c t i o n  which w i l l  be devoted e n t i r e l y  t o  the  sub jec t  
of t h e  communications problem. For purposes of d i scuss ion  he re ,  it w i l l  be 
assumed t h a t  a 2-m pa rabo l i c  antenna i s  used t o  communicate on the  X-band 
wavelength over an Earth-to-Venus d is tance  of  1.72 AU. Factors  a f f ec t ing  the  
antenna s i z e  and wavelength w i l l  be discussed l a t e r ,  but the  communications 
d i s t ance  is recognizable  as a worst poss ib l e  condi t ion t h a t  occurs nea r  t he  
end of  a l l  t y p i c a l  240-day mapping missions covered i n  the  d a t a  of f i g u r e  7. 

Most of these  a r e  bes t  

Given the  assumptions j u s t  made about t h e  communications system, s o l a r  
c e l l  power p r o f i l e s  can be developed, and one i s  displayed i n  f i g u r e  26 f o r  
e = 0.2 and N = 3. The ho r i zon ta l  a x i s  i s  the  t o t a l  time f o r  t h ree  o r b i t s  
while t he  v e r t i c a l  ax i s  i s  t h e  power required.  
used he re  t o  i n d i c a t e  b a t t e r y  discharge per iods.  For  the  condi t ions chosen 
(a’ = 60’ , Amax = 60°, r e so lu t ion  = 100 m) , t he  r ada r  powers requi red  a r e  
r a t h e r  small (see f i g .  23(a) ) ,  bu t  t he  time t o  communicate t h e  implied d a t a  
back t o  Earth i s  s h o r t ,  leading t o  high power requirements f o r  communications. 
I t  must be r e c a l l e d  t h a t  t h e  occu l t a t ion  assumed f o r  t h i s  o r b i t  i s  maximum 
and a t  apoapsis.  

Powers l e s s  than zero a r e  

Changing t o  a higher  e c c e n t r i c i t y  o r b i t  a f f e c t s  t h e  a l l o c a t i o n  of time 
as shown i n  f i g u r e  27 f o r  t h e  case of e = 0.5 and N = 2 .  
u res  25 and 27 shows t h a t  t h e  mapping time i s  almost unaffected,  while t he  
occu l t a t ion  time is  almost doubled. However, t h e  charging (and communicating) 
time has increased by a f a c t o r  of  3. 
f i g u r e  28 reaches lower peak powers and poss ib ly  has fewer opera t iona l  prob- 
lems than t h e  case shown i n  f igu re  26. 

Comparing f i g -  

Therefore,  t he  power p r o f i l e  shown i n  

Occult a t  ions 

I t  is  clear from these  f i g u r e s  t h a t  t he re  is a tendency f o r  s o l a r  cel l  
systems t o  be a p p o p r i a t e  f o r  high e c c e n t r i c i t y  o r b i t s .  
have been examined were based on a s e l e c t i o n  of worst  parameter values .  
example, none of  t h e  des i r ab le  oppor tuni t ies  considered i n  f i g u r e s  6 encounter 
apoapsis Sun occu l t a t ion  except t he  1986 and 1988 oppor tun i t i e s ,  which a r e  
type I1 t r a j e c t o r i e s .  In  these  cases ,  occu l t a t ion  occurs f irst  a t  p e r i a p s i s  
and begins  a t  p l a n e t  a r r i v a l ;  occu l t a t ion  l a t e r  i n t e r s e c t s  apoapsis bu t  only 
nea r  t h e  end of t he  mission. This assumes t h a t  a l l  t he  o r b i t s  are p o l a r  and 
have p e r i a p s i s  over t he  equator.  Since the  t r a j e c t o r i e s ,  i n  genera l ,  over- 
t ake  Venus from behind, p e r i a p s i s  w i l l  tend t o  be i n  f r o n t  of  the  p l ane t .  

However, cases t h a t  
For  
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This leads t o  the  occurrence of occu l t a t ion  a t  p e r i a p s i s  during the  e a r l y  
p a r t  of t he  mission sequence. 
p l ane t  has made almost 270° of r o t a t i o n .  By t h i s  t ime, 75 percent  of t h e  
mapping w i l l  have been completed. 

Apoapsis occu l t a t ion  w i l l  no t  occur u n t i l  t h e  

Orbi t  Maintenance 

An important f a c t o r  no t  considered so  fa r  i s  t h e  spacecraf t  a t t i t u d e  
changes requi red  f o r  e l l i p t i c  o r b i t s .  
l a te r  i n  t h i s  paper,  bu t  some general  considerat ions here  a r e  i n  order .  
F i r s t ,  a t  very high e c c e n t r i c i t y  t h e r e  w i l l  be some l imi ted  spacec ra f t  a b i l -  
i t y  t o  maintain an o r b i t  p e r i a p s i s  wi th in  t h e  des i r ed  l i m i t s .  This has 
a l ready been examined t o  some degree i n  f i g u r e  12(b).  
t i o n  cont ro l  and control-moment gyro systems a re  two obvious opt ions t h a t  
should be considered f o r  maintaining spacecraf t  a t t i t u d e .  F ina l ly ,  t h e  s i m -  
p l e r  case o f  t h e  c i r c u l a r  o r b i t ,  whatever i ts  propuls ive impl ica t ions ,  w i l l  
be the  l e a s t  troublesome case t o  consider  as f a r  as o r b i t a l  operat ions a r e  
concerned. 

This w i l l  be considered i n  more d e t a i l  

Otherwise, gas  reac-  

In  the  sc ience  requirements s e c t i o n  of t h i s  r e p o r t ,  it was remarked t h a t  
considerable  overlap was a he lp fu l  f e a t u r e ,  perhaps implying f o r e  and a f t  
viewing o f  t h e  p l a n e t ' s  sur face .  Although these  f a c t o r s  should have been 
considered here ,  they have not  been because of t h e  l a rge  number of o the r ,  
l e s s  spec ia l i zed ,  problems t h a t  were encountered. 

SPACECRAFT SIZING 

A number of spacecraf t  design p o s s i b i l i t i e s  were inves t iga t ed ,  as con- 
s t r a i n e d  wi th in  the  boundaries of  f i g u r e  22 ,  which p resc r ibe  a p re fe r r ed  
opera t iona l  domain. For each design,  computer programs were used t o  generate  
radar  system designs and estimates of spacecraf t  weight and support  require-  
ments using the  r e l a t ionsh ips  previously discussed as well  as sca l ing  laws 
t h a t  w i l l  be descr ibed i n  t h i s  s ec t ion .  

Based on t h e  s i z i n g  r e l a t ionsh ips  given i n  re ference  2,  t he  weight of t h e  
r ada r  i s  est imated from 

wR = 13.7 + 20.9 log(PX) , kg 

where 

P peak radar  power, kW 

h operat ing wavelength, cm 
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The antenna weight i s  propor t iona l  t o  i t s  a rea ,  

W = 4.9L - D , kg an t  

with L and D given i n  meters. 
f o r  an e r e c t i b l e  antenna, which must supply s u f f i c i e n t  s t r u c t u r a l  r i g i d i t y  t o  
support  i ts  nonsymmetrical shape. 
i n s e r t i o n  t o  avoid excessive "g"- loading. 

This  weight i s  considered t o  be  appropr ia te  

I t  should be  extended only af ter  o r b i t a l  

The communications and da ta  s to rage  system a r e  determined by t h e  da t a  
load. 
t hese  a r e  preswnmed and d i g i t i z e d  f o r  t ransmission t o  Earth using G b i t s  pe r  
measurement. 
per iod  fitrans, t he  r e s u l t i n g  da ta  r a t e  i s  

With each pu l se  o f  t h e  r ada r ,  W / A r  measurements a r e  obtained; M of 

With a mapping pass  o f  dura t ion  t m q  and a d a t a  t ransmission 

w 0 PRF 0 G . ' m a p  . - b i t s / s e c  M Y  ttrans A r  DR = 

This r e l a t i o n s h i p  ignores t h e  housekeeping and o the r  encounter sc ience  telem- 
e t r y  which i s  i n s i g n i f i c a n t  compared t o  t h a t  r e s u l t i n g  from the  mapping 
experiment . 

The t ransmission per iod  i s  

= N period - t - ttrans D t -  
m q  

where 

M number of r e tu rns  p r e s m e d  (M = 2AX/L)  

N number of  o r b i t s  pe r  mapping pass  

occu l t a t ion  devia t ion  

t mapping 
map 

allowance f o r  o r i e n t a t i o n  of t h e  spacecraf t  from mapping mode t o  
recharge mode, normal t o  t h e  Sun, and subsequent r e t u r n  t o  mapping 
o r i e n t a t i o n ;  assumed t o  be 0.2 hour 

tAR 

The dec is ion  t o  use only b a t t e r y  power during p e r i a p s i s  was prompted by 
t h e  f a c t  t h a t  t he  Sun w i l l  be occul ted a t  p e r i a p s i s  during some per iod  i n  the  
mission. The b a t t e r y  then is  designed t o  maintain t h e  spacecraf t  and r ada r  
during mapping. Data t ransmission is precluded during t h i s  per iod  due t o  t h e  
high r ada r  t r ansmi t t e r  power load as w e l l  as t h e  d i f f i c u l t y  of d i r ec t ing  the  
te lemetry antenna a t  Earth during t h i s  phase. 
t he  balance of  t he  o r b i t ,  the  recharge phase, w i l l  no t  be a problem u n t i l  

Solar  occu l t a t ion  throughout 
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c lose  t o  the  end o f  t h e  mission. 
a t  Venus, t h e  e f f e c t  of occu l t a t ion  on spacecraf t  design i s  minimal, p a r t i -  
c u l a r l y  i n  moderately e c c e n t r i c  o r b i t s .  
s o l a r  occu l t a t ion  a t  apoapsis was included. 

Due t o  t h e  high e f f i c i ency  o f  s o l a r  panels  

Therefore,  f o r  t h e  base l ine  approach, 

For spacec ra f t  power, s o l a r  c e l l s  o f f e r  t h e  l i g h t e s t  and most r e l i a b l e  
source.  Even with performance degradation due t o  hea t ing  of  t h e  c e l l s ,  which 
occurs due t o  t h e  proximity o f  Venus t o  the  Sun, t h e  increased f l u x  more than 
compensates f o r  t h e  l o s s  o f  e f f i c i ency .  
185 W/m2 and 42.5 W/kg a r e  e a s i l y  achieved, e i t h e r  by means of ro l l -ou t  a r rays  
o r  body-mounted cells. The t o t a l  spacecraf t  power requirement i s  on the  order  
of 500 t o  700 W,  assuming X-band t r ansmi t t e r s  f o r  te lemetry.  Thus, a nominal 
panel a r e a  o f  4 m2 would s u f f i c e  i f  o r i en ted  normal t o  t h e  Sun, or -12  m2 i f  
no t  or ien ted  o r  i f  body mounted. I t  was found t h a t  RTG's ,  which a t  bes t  can 
d e l i v e r  about 0.9 W/kg, would be excessively heavy fo r  t h i s  app l i ca t ion  and 
t h e i r  use consequently was r e j ec t ed .  
use a NiCd b a t t e r y  with s p e c i f i c  energy o f  5.45 W-hr/kg and depth of  discharge 
of 0.50, due t o  t h e  l a rge  number o f  opera t iona l  cycles .  

Thus, a s p e c i f i c  power o f  a t  l e a s t  

For  energy s to rage ,  i t  was necessary t o  

At t i tude  cont ro l  could be implemented by means of cont ro l  moment gyros,  
due again t o  the  number of  o r i e n t a t i o n  cycles .  

As ind ica ted  above, Earth occu l t a t ion  i s  of concern only when it occurs 
ou t s ide  t h e  mapping period. The communications system was s i z e d  assuming the  
worst case o f  occu l t a t ion  during apoapsis f o r  each o r b i t  and maximum communi- 
ca t ions  d is tance .  

Calculat ions were performed f o r  each design as previously discussed 
using a 64 l eve l  gray s c a l e  (G = 6) and a sur face  r e so lu t ion  of 100 m. A s  a 
resul t , '  d a t a  r a t e s  on t h e  order  of 70 Kbps and s torage  o f  about I O 9  b i t s  was 
demonstrated t o  be a common requirement f o r  a l l  cases of  i n t e r e s t .  
t hese  requirements a r e  within present  capab i l i t y .  
r equ i r e  t h e  i n s t a l l a t i o n  of X-band equipment a t  t h e  64-m DSN s i t e s ,  while t h e  
s to rage  requirement can be s a t i s f i e d  by t h e  recorder  developed f o r  ERTS, o r  
by a f i l m  system. 

Both of 
Such da ta  r a t e s  would 

Table 1 compares t h e  performance of  spacecraf t - to-Earth da ta  l i nks  using 
S- and X-band frequencies .  This comparison assumes a 2-m d i sh  on t h e  space- 
c r a f t  and t h e  t y p i c a l  case of a 70 Kbps da ta  r a t e .  This  antenna was chosen as 
t h e  maximum s i z e  t h a t  could be d i r ec t ed  toward Earth with a s i n g l e  r o t a t i o n a l  
degree of freedom, while t h e  spacecraf t  is d i r ec t ed  approximately normal t o  
t h e  Sun f o r  ac t iva t ion  of t h e  s o l a r  panels .  The communications d is tance  w i l l  
always be less than 1.74 AU. A 64-m receiving antenna i s  assumed a t  the  DSN 
s i te .  
using 64-m antennas. Therefore,  s i t e  viewing windows need not  be considered. 
The energy r a t i o  of 5 dB i s  appropr ia te  f o r  high d a t a  rates using convolu- 
t i o n a l  encoding with Ver te rb i  decoding f o r  a b i t  e r r o r  rate. The X-band 
l i n k  requi res  approximately 1 /7  o f  t h e  S-band t r a n s m i t t e r  power and t h i s  
facil i tates t h e  e n t i r e  spacec ra f t  design. 
p re fe r r ed  f o r  t h i s  app l i ca t ion .  
t h e  s o l a r  panel may be a r t i c u l a t e d  t o  po in t  toward t h e  Sun while t h e  spacecraf t  

In  t h e  time franle of t h i s  mission, DSN coverage w i l l  be continuous 

As a consequence, an X-band l i n k  is  
Al te rna t ives  do e x i s t ,  however; s p e c i f i c a l l y ,  
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body is  d i r e c t e d  toward Earth and the  r a d a r  antenna used f o r  communications. 
Due t o  t h e  high gain o f  t h e  r a d a r  antenna t h i s  would tend t o  reduce the  t r ans -  
mit ter  s i z e  and s o  permit more extensive considerat ion of an S-band l ink .  
A more thorough s tudy of a l t e r n a t i v e s  i s  necessary t o  a s c e r t a i n  an optimum 
con f i gura t  i on. 

For each spacecraf t  design and i t s  corresponding d a t a  ra te ,  t he  e f f e c t i v e  
r ad ia t ed  power a t  X-band i s  given by 

ERP = d a t a  r a t e  (dB) + 5.4 dB 

o r ,  f o r  a 2 - m  d i sh  a t  X-band, t h e  t r a n s m i t t e r  r a d i a t e d  power i s  

ERP = d a t a  r a t e  (dB) - 37 dB 

as i s  shown i n  t a b l e  1. 
mi t te r  s i z e  f o r  each design. 

This r e l a t i o n s h i p  was used t o  es t imate  t h e  t r ans -  

For da t a  s to rage ,  two systems must be evaluated f o r  t h e i r  r e l a t i v e  
p o t e n t i a l .  A video t a p e  recorder similar t o  t h a t  developed f o r  ERTS would 
have the  necessary capaci ty  of l o 9  b i t s  and associated d a t a  r a t e s .  
recorder  i s  capable of 4000 recording playback cycles ,  well above t h e  900- 
cycle maximum requirement f o r  cases within t h e  boundaries shown i n  f i g u r e  22.  
The disadvantage o f  tape recorders  is t h e  necess i ty  f o r  e r a su re  of one pass o f  
d a t a  i n  order t o  record t h e  subsequent pass.  
f i l m  recording, o f t e n  used with side-looking airborne r a d a r  ( f igs .  1-3). I t  
i s  estimated t h a t  t h e  weight and power requirements of a f i l m  system adequate 
t o  record a l l  t h e  d a t a  f o r  t h i s  mission would be comparable t o  a magnetic tape 
system. In  addi t ion,  t h e  d a t a  may be permanently recorded p r i o r  t o  pre- 
summing and read out  a t  a la te r  time a t  h igher  azimuth r e so lu t ions ,  providing 
a "zoom capabi l i ty ."  The s p a t i a l  r e s o l u t i o n  of good films would no t  be a 
l i m i t i n g  f a c t o r  i n  t h i s  process.  
however, l imi t ed  by t h e  dynamic range o f  t h e  f i l m ,  approximately 100 t o  1. 
Further ,  f i l m  i s  more s e n s i t i v e  t o  r a d i a t i o n ,  although t h i s  i s  no t  of rea l  
concern unless RTG power sources were used. Using magnetic t ape ,  t he  res- 
t r i c t e d  da t a  r a t e  t o  Earth and t h e  recorder  bandwidth determine t h e  des i r ab le  
number of levels t o  which t h e  d a t a  i s  encoded. A s  a r e s u l t ,  f u r t h e r  ana lys i s  
w i l l  be necessary t o  a s c e r t a i n  the  p r e f e r r e d  system f o r  t h i s  appl icat ion.  

The ERTS 

One a l t e r n a t i v e  i s  t h e  use of 

The number of contrast  gray l eve l s  is, 

For t h e  o r b i t a l  i n s e r t i o n  s t a g e ,  t h e  following parameters were obtained 
from reference 34. 

I n e r t  mass f r a c t i o n  = 0.14 

I = 285 seconds 
SP 

The AV f o r  p e r i a p s i s  i n s e r t i o n  was based on a nominal V, of 4.44 km/sec and 
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where 

R p e r i  aps i s  r ad ius  

1-I g r a v i t a t i o n a l  constant f o r  Venus 
P 

This value was incremented by 0.75 percent  f o r  contingencies and 1.0 percent  
t o  approximate g rav i ty  losses .  
ances f o r  midcourse cor rec t ions  and o r b i t  t r i m .  No provis ion  was included 
f o r  r o t a t i o n  of p e r i a p s i s  i n  t h i s  s i z i n g  exerc ise .  Using t h e  s t a t e d  config- 
u ra t ion ,  a computer was used t o  design a r ada r  and spacecraf t  including pro- 
pu ls ion  f o r  each e c c e n t r i c i t y  and swath width p o s s i b i l i t y .  Tota l  spacec ra f t  
weights,  including propuls ion,  a r e  displayed i n  f i g u r e  29. From t h i s  f i g u r e ,  
i t  i s  c l e a r  t h a t  higher  e c c e n t r i c i t i e s  and narrow swaths provide t h e  most 
acceptable  weights. 
t h e  e f f e c t  of  exceeding t h e  antenna he ight  l i m i t a t i o n  of 2 m. 

This i s  l a rge  enough t o  include t y p i c a l  allow- 

Two cases ou t s ide  t h e  boundary are shown t o  demonstrate 

Two cases r ep resen ta t ive  of acceptable  design were explored i n  f u r t h e r  
d e t a i l  t o  i l lumina te  subsystem comparisons. Very high e c c e n t r i c i t i e s  were not  
included due t o  the  increas ing  d i f f i c u l t y  of o r b i t  maintenance from s o l a r  per-  
tu rba t ions  and unacceptably l a r g e  antenna lengths  ; the  exact  e c c e n t r i c i t y  
where these  become a problem has not  been determined here and w i l l  r equ i r e  a 
more d e t a i l e d  examination of  spacecraf t  operat ions and a more p rec i se  speci-  
f i c a t i o n  of t h e  o r b i t  c h a r a c t e r i s t i c s .  Table 2 p re sen t s  t h e  c h a r a c t e r i s t i c s  
and subsystem weights of t hese  designs.  

A comparison of t hese  two r ep resen ta t ive  designs demonstrates t he  advan- 
tage  of higher  e c c e n t r i c i t y  o r b i t s .  This r e s u l t s ,  aga in ,  from the  lower AV 
requirement coupled with t h e  advantage of longer  communications t ime and 
longer b a t t e r y  recharge time. 
antenna length t h a t  r e s u l t s  from a lowered PRF. 
are q u i t e  modest i n  s i z e  due t o  the  high e f f i c i ency  near  Venus, and or ien-  
t a b l e  panels a r e  assumed. As the  o r b i t  e c c e n t r i c i t y  i s  increased,  t h e  required 
s o l a r  panel a r e a  decreases.  This permits  considerat ion of non-orientable 
panels  and u l t imate ly  t o  body-mounted c e l l s .  Both configurat ions could be 
overdesigned t o  compensate f o r  reduced s o l a r  viewing cross-sect ions.  The 
e f f e c t  on spacec ra f t  weight would be minimal. 

The disadvantage l ies i n  the  g r e a t e r  radar  
The s o l a r  panels  s p e c i f i e d  

No se r ious  technological  problems have been encountered fo r  t h e  spec i f i ed  
r e so lu t ions .  
cussed and appear t r a c t a b l e .  Thus, increased  azimuth reso lu t ions  can be con- 
s ide red  without changing t h e  mission f e a s i b i l i t y .  Figure 30 shows t h e  e f f e c t  
of  azimuth r e so lu t ion  on t r a n s m i t t e r  power. For t h e  0 .5  o r  0.2 e c c e n t r i c i t y  
cases ,  a 100 W t r ansmi t t e r  would s u f f i c e  f o r  an azimuth r e so lu t ion  of approxi- 
mately 15 m. 
p ropor t iona te ly .  

The da ta  s to rage  and t ransmission requirements have been d i s -  

The da ta  s to rage  requirement would a l s o  be increased 
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Referr ing again t o  t a b l e  2,  t he  spacecraf t  weight i s  not  highly s e n s i t i v e  
t o  e c c e n t r i c i t y  and is nominally about 550 kg. This i s  cons is ten t  with space- 
c r a f t  weights,  using s o l a r  cells, determined by reference 33 f o r  a Venus r ada r  
mapping mission. 

CONCLUDING REMARKS 

Thus, it would appear t h a t  a Venus radar  mapping mission within t h e  1980 
time per iod  could be accommodated with t h e  launch veh ic l e  and e l e c t r o n i c  
s t a t e -o f - the -a r t  which could e x i s t  a t  t h a t  time. The use of highly e c c e n t r i c  
o r b i t s  i s  an i n t e r e s t i n g  approach t o  meeting the  Venus r ada r  mapping require-  
ments. Preliminary Venus approach weight es t imates  are low enough i n  many 
cases t o  suggest t h e  launching of two tandem spacecraf t  with a s i n g l e  Shut- 
t l e /Centaur  o r  a s i n g l e  spacec ra f t  on the  T i t a l  IIIE/Centaur launch vehic le .  
Also, t he  planned Viking propuls ion system could be considered with a minimum 
of modif icat ions,  thus  obviat ing the  need f o r  a space-s torable  propuls ion 
system development f o r  t h i s  mission. However, t h e  use of  e l l i p t i c  o r b i t s  
extends t h e  minimum mission mapping time from 120 t o  240 days. 
nized t h a t  t h i s  creates a v a r i e t y  o f  l i f e t i m e  r e l a t e d  technology problems f o r  
many subsystems. 

I t  i s  recog- 

Ames Research Center 
National Aeronautics and Space Administration ~ 

Moffett F i e ld ,  Calif., 94035, February 23, 1973 
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TABLE 1.- SPACECRAFT-EARTH DATA L I N K  COMPARISON FOR A DATA RATE OF 70 Kbp~ 

S-Band, 
2.30 GHz 

X-  Band , 
8.448 GHz 

Ef fec t ive  r ad ia t ed  power 
Transmit ter  
Antenna gain,  2 m 

Transmitter and r ece ive r  
Point ing loss  
Free space l o s s ,  1.74 AU 
Atmospheric a t tenuat ion  
Receiving antenna, 64 m 
Tota l  received power 

51.3 dB 

31.1 
losses  -2.0 

- .5  
-268.0 

0 
61.4 

-157.8 

(105 W) 20.2 
53.9 dB 

(14.2 W) 11.5 
42.4 
-1.5 
-1.0 

-279.3 
- . 2  

71.5 
-156.6 

Carrier channel 
~~~ ~~ 

Modulation l o s s ,  1.15 rad -7.8 
Received c a r r i e r  power -165.6 
Noise s p e c t r a l  dens i ty  number -214.6 
APC noise  bandwidth 10.8 
Received carrier- to-noise  r a t i o  38.2 
Threshold car r ie r - to-noise  r a t i o  6.0 
Margin 32.2 

-7.8 
-164.4 
-213.4 

10.8 
38.2 
6.0 

32.2 

Signal  channe 1 

Modulation lo s s  , 1.15 r a d  
Received s u b c a r r i e r  power 
Signal-to-noise r a t i o  
Required energy- to-noise  r a t i o  
Data r a t e ,  1 Mbps 
Margin 

-. 8 - .8 
-158.6 -157.4 

56.0 56.0 
5.0 5.0 

48.5 48.5 
2.5 dB 2.5 dB 
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TABLE 2.- COMPARISON OF REPRESENTATIVE SPACECRAFT DESIGNS 
FOR TWO DIFFERENT ECCENTRICITIES 

e = 0.2 e = 0.5 

Orbi t  

N 
Swath , km 
Orbi t  per iod,  h r  
Period f o r  N o r b i t s ,  h r  
Mapping dura t ion ,  h r  
So la r  and Earth occul ta t ion ,*  h r  
Recharge and communications time,* h r  
AV, km/sec 

3 2 
55.4 74.8 

2.27 4.6 
6.81 9.18 

.53 .52 
2.18 2.46 
3.9 6.0 
3.286 2.359 

Radar 

Wavelength, cm 13 13 
Res o 1 u t i  on, km .1 .1 
Pulse length,  usec .31 -29 

Antenna length,  m 6.2 9.5 
PRF, PPS 49 83 3615 

Antenna height ,  m 1.9 1.4 
Antenna weighty kg 57 64 
Radar average power, W 2.6 17.6 
Radar peak power, kW 1.7 17.0 
Radar supply power, W 10 8 153 
Radar weight, kg 42 63 

Power supply 

Spacecraf t  power, W 189 
Recharge power, W 310 

53 
Total  demand, W 552 

110 
So la r  P a n e l  requirement, W 662 
Panel area, m2 3.6 
Panel weight, kg 15.6 
Power conditioning weight, kg 5.8 
Presun acquis i t ion  b a t t e r y  requirement WH 705 
Orb i t a l  b a t t e r y  requirement, WH 689 

Telemetry supply, W - 
Losses and s a f e t y  f ac to r ,  W - 

Total  b a t t e r y  weight, kg (NiCd) 53.3 

185 
2 2 1  

51 
45 7 
91 

548 

- 
- 

3.0 
12.9 
5.7 

690 
710 

53.7 

*For N o r b i t s .  
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TABLE 2.- COMPARISON OF REPRESENTATIVE SPACECRAFT DESIGNS 
FOR TWO DIFFERENT ECCENTRICITIES - Concluded 

e = 0.2 e = 0.5 

Communications and d a t a  

Frequency, MHz 8448 8448 
Presum number 32 2 1  
B i t  rate recorded, Kbps 513 7 75 
B i t  r a te  playback and t ransmit ted,  Kbps 70 68 
Storage required,  b i t s  0. 9x109 1 . 4 ~ 1 0 ~  
Antenna diameter, m 2 2 
E l P  required,  dB 53.9 53.7 
Transmitter RF power, W 14.2 13.6 
Transmitter supply power, W 5 3  52 

Spacecraft  

Radar and antenna 
Data processing 
Recorder 
At t i tude  cont ro l  
S t ruc tu re  and thermal cont ro l  
Cabling 
Commun i c a t  i o  ns 
Re ceiver/decoder/s equencer 
Power supply 

Spacecraf t  mass, kg 

98.9 
22.7 
20.4 

118.6 
135.6 
29.3 
13.1 
32.7 
74.7 

556.0 

126.8 
22 .7  
20.4 
96.5 

136.6 
29.3 
13.1 
31.5 
72.3 

549.2 

894.8 Propel lant  1784.6 
I n e r t s  and u l lage  249.9 125.3 

In jec ted  mass, kg 2580.5 1569.3 
(Total  s t age  mass) (2034.5) (1020.1) 

*For N o r b i t s .  
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(a) Resolution 15 m. 

Figure 1.- Radar imagery of p a r t  of t he  Morti segment of t he  northwestern 
Darien Range, showing (pr imari ly)  one of t h e  c h a r a c t e r i s t i c  crestal  ho r s t  
blocks (a) coincident with t h e  Continental  Divide and a prominent longi- 
t ud ina l  boundary f a u l t  (b) .  Also d i s -  
played are an a n t i c l i n a l  f o l d  (d) and a syncl ine (e ) ,  both expressed i n  
Upper Eocene c l a s t i c  s t ra ta  on the  south s i d e  of the  Range. The south- 
adjacent  s t r i k e  va l l ey  ( f )  manifests t he  outcrop of souther ly  dipping 
Upper Eocene shale .  
(C la r i t a  1s . )  are apparent a t  (g). 

A poss ib le  ring-dike i s  a t  IC).  

Southerly dipping Lower-Middle Oligocene carbonates 
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(b) Resolution 3 100 m. 

Figure 1. - Concluded. 
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us, June 6, 1972. (Courtesy of Richard 
Go 1 ds t e in  , JPL)  
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Figure 5.- Future Earth-based capabi l i ty ;  Arecibo observat ional  oppor tuni t ies ,  
1980, 1988, 1996. 
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[a) Earth departure c h a r a c t e r i s t i c s ,  1983. 
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(b) Venus a r r i v a l  c h a r a c t e r i s t i c s ,  1983. 

Figure 6 . -  Heliocentr ic  launch t r a j e c t o r i e s  from Earth t o  Venus. 
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(c) Earth departure  c h a r a c t e r i s t i c s ,  1985. 
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(d) Venus a r r i v a l  c h a r a c t e r i s t i c s ,  1985. 

Figure 6 .  - Continued. 
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(e) Earth departure  c h a r a c t e r i s t i c s ,  1986. 
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(f) Venus arrival c h a r a c t e r i s t i c s ,  1986. 

Figure 6. - Continued. 
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(g) Earth departure c h a r a c t e r i s t i c s ,  1988. 
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(h) Venus arrival c h a r a c t e r i s t i c s ,  1988. 

Figure 6. - Continued. 
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( i )  Earth departure  c h a r a c t e r i s t i c s ,  1990. 
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( j )  Venus a r r i v a l  c h a r a c t e r i s t i c s ,  1990. 

Figure 6. - Concluded. 
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Figure 7.- Coordinate system used f o r  Venus a r r i v a l ;  t y p i c a l  1983 a r r i v a l  
conditions.  

r b i t  i n se r t ion ;  H = 500 km. 
P 

Figure 8.- Velocity 
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Figure 9.- I n s e r t i o n  v e l o c i t y  requirements caused by p e r i a p s i s  ro t a t ion .  
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Figure 13.- 1983 SEP Venus o r b i t e r ;  propulsion system = 30 kg/kWe, f l i g h t  
time = 150 days, H = 1000 km, I ( r e t ro )  = 300, r e t r o  tank 
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Figure 14.- Charac te r i s t i c s  of 1983 Venus o r b i t e r  missions; e = 0.0,  f l i g h t  
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(a) Typical mapping geometry. 

H 

(b) Simplified geometry near pe r i aps i s .  

Figure 18. - Geometric r e l a t i o n s  f o r  o r b i t a l  radar  mapping. 
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Figure 20.- Radar antenna dimensions vs. eccen t r i c i ty ;  X = 13 cm, N = 1, 
20 percent  swath overlap,  H = 500 km. 

P 

59 



I I I I I 
0 .2 .4 .6 .% I .o 

ORBIT ECCENTRICITY, e 

10 ' 
Figure 21.-  Swath width a t  pe r i aps i s ;  H = 500 km, H 

P P 
= 1000 km, N = 1, 

20 percent  overlap.  

100 

Figure 22.- Radar coverage impl ica t ions ;  H = 500 km, a = 60°, Amax = 60°, 
P 

20 percent  overlap.  

60 



c 
ORBITS PER 
MAPPING PASS 0.4 \ I 0.5 

Y--r ' I I 

SWATH WIDTH, km 

(a) Maximum l a t i t u d e  of coverage, 60'. 

IO I O 0  
SWATH WIDTH, km 

= 0.8 
0.7 

0.6 
0.5 
0.4 
0.3 
8 2  

I 

(b) Maximum l a t i t u d e  of coverage, 70'. 

J 

Figure 23.- Radar power requirements; H = 500 km, X = 13 cm, P 
r e so lu t ion  = 100 m, 01 = 60'. 
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Figure 25.- Mission p r o f i l e ;  e = 0.2 ,  N = 3 .  

800 - 

600 - 

400 - 
v) 
t t 

2" 
&.. 200 - 
W 

0 
3 

0 -  

s/c 

SOLAR OCCULTATION 

iil il-GG--ll F h  

-400 ' I I I I I I I I 

0 I 2 3 4 5 6 7 a 
TIME, hr I 

Figure 26.- Spacecraf t  power p r o f i l e ;  H = 500 km, a = 60°, 
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e c c e n t r i c i t y  = 0.2 ,  r e s o l u t i o n  = 100 m y  Amax = 60°, N = 3 ,  
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Figure 27.- Mission p r o f i l e ;  e = 0.5, N = 2. 
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Figure 28.- Spacecraft  power p r o f i l e ;  H = 500 km, a = 6 0 ° ,  

e c c e n t r i c i t y  = 0.5, reso lu t ion  = 100 m, Amax = 6 0 ° ,  N = 2. 
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Figure 29.- Ef fec t  of opera t iona l  envelope on spacecraf t  i n s e r t i o n  weight; 
H = 500 km, A = 13 cm, 01 = 60°, Amax = 60". 
P 

Figure 30.- Ef fec t  of dual reso lu t ion .  
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